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Cloud computing represents one of the fastest growing areas of technology and offers a new computing model for various
applications and services. This model is particularly interesting for the area of biometric recognition, where scalability, processing
power, and storage requirements are becoming a bigger and bigger issue with each new generation of recognition technology. Next
to the availability of computing resources, another important aspect of cloud computing with respect to biometrics is accessibility.
Since biometric cloud services are easily accessible, it is possible to combine different existing implementations and design new
multibiometric services that next to almost unlimited resources also offer superior recognition performance and, consequently,
ensure improved security to its client applications. Unfortunately, the literature on the best strategies of how to combine existing
implementations of cloud-based biometric experts into a multibiometric service is virtually nonexistent. In this paper, we try to close
this gap and evaluate different strategies for combining existing biometric experts into a multibiometric cloud service. We analyze
the (fusion) strategies from different perspectives such as performance gains, training complexity, or resource consumption and
present results and findings important to software developers and other researchers working in the areas of biometrics and cloud
computing. The analysis is conducted based on two biometric cloud services, which are also presented in the paper.

1. Introduction

Biometric technology is slowly gaining ground and is making
its way into our daily lives. This development is exemplified
best by the last generation of smart-phones, which is starting
to adopt fingerprint technology as means of improving
security and is bringing biometrics closer to our minds
than ever. While biometric technology for personal devices,
such as notebooks and mobile phones, is slowly gaining
traction, its broader use on the Internet is still quite modest.
The main reason for this setting pertains mainly to open
issues with respect to the accessibility and scalability of the
existing biometric technology [1]. Scalability issues are also of
relevance to other deployment domains of biometrics, such
as forensics or law-enforcement, where biometric databases
are expected to grow significantly over the next few years
to accommodate several hundred millions (or even billions)
of identities [2]. To meet these demands, it is necessary to

develop scalable biometric technology, capable of operating
on large amounts of data, and to ensure sufficient storage
capacity and processing power [1].

A possible solution for the outlined issues is the develop-
ment of biometric technology for the cloud, where the cloud
platform ensures appropriate scalability, sufficient amount
of storage, and parallel processing capabilities. With the
widespread availability of mobile devices, the cloud also pro-
vides an accessible entry point for various applications and
services relying on mobile clients [1]. The enormous potential
of cloud-based biometric solutions was also identified by
various companies which are currently developing or have
only recently released their biometric cloud services to the
market.

While a cloud platform can ensure the necessary infras-
tructure and resources for the next generation of biomet-
ric technology, the technology itself must ensure the best
possible recognition (e.g., verification) performance. In this



respect, it is necessary to stress that biometric techniques
relying on a single biometric trait (i.e., unimodal biometric
experts) can only be improved to a certain extent in terms
of performance. From a certain point forward, it may be
either too costly or not yet feasible to further improve
their performance. However, if performance is of paramount
importance, the use of multibiometrics may represent a
feasible solution.

The term multibiometrics refers to biometric technology
that exploits several biometric experts and, hence, relies on
several biometric traits of the same individual for iden-
tity inference. Multibiometric systems can offer substantial
improvements in terms of accuracy and improvements in
terms of flexibility and resistance to spoofing attacks. They
also introduce higher tolerance to noise and data corruption
and also reduce the failure-to-enroll rate [3].

In this paper, we address the problem of building (cloud-
based) multibiometric systems based on existing implemen-
tations of unimodal biometric experts. Building (cloud-
based) multibiometrics systems from existing implementa-
tions of biometric experts, instead of developing the system
from scratch, has several advantages. The most obvious
advantage is the reduction in effort needed to implement a
multibiometric system. Furthermore, it is possible to choose
the single expert systems from different vendors according to
the desired specifications and performance capabilities. On
the other hand, it is necessary to understand the process of
combining the single expert systems from the perspectives
of potential performance gains, additional resources needed,
implementation complexity, and the like. Ideally, we would
like to combine different (existing) biometric cloud services
into a multibiometric service with significant performance
gains and hence large improvements in security, but without
the need for large modifications of existing client applica-
tions. Such multibiometric services would be of great interest
to existing end-users of biometric cloud services and would
exhibit significant market value.

To better understand the problem outlined above, we
present in this paper an analysis of different (fusion) strategies
for combining existing cloud-based biometric experts. To be
as thorough as possible, we conduct the analysis under the
assumption that only limited information, such as classifi-
cation decisions or similarity scores, can be obtained from
the existing cloud services (i.e., from the unimodal biometric
experts). The fusion strategies are analyzed from different
perspectives such as performance gains, training complexity,
or resource consumption. The analysis is carried out based on
two biometric cloud services developed in the scope of the
KC CLASS project [1], the first being a face recognition cloud
service and the second being a fingerprint recognition cloud
service. The results of the analysis are important to engineers,
software developers, and other researchers working in the
areas of biometrics, cloud computing, and other related areas.

The rest of the paper is structured as follows. In Section 2,
prior work in the area of multibiometrics is surveyed. In
Section 3, the baseline (cloud-based) unimodal biometric
experts are introduced. In Section 4, different strategies for
combining the biometric experts are presented and their
characteristics are discussed. In Section 5, a detailed analysis
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of all fusion strategies is presented and nonperformance
related characteristics of the fusion strategies are also pre-
sented and elaborated on. The paper is concluded with some
final comments and directions for future work in Section 6.

2. Related Work

The problem of combining unimodal biometric experts
into multibiometric systems has been studied extensively in
the literature (see, e.g., [3-9]). In general, the process of
combining unimodal systems (usually referred to as fusion)
can be conducted at the following [3].

(i) The Signal or Sensor Level. Sensor level fusion can
benefit multisample systems which capture multiple
snapshots of the same biometric. The process com-
monly referred to as mosaicing, for example, captures
two or more impressions of the same biometric trait
and creates an enhanced composite biometric sample
that is better suited for recognition [3, 10].

(ii) The Feature Level. Fusion at the feature level involves
integrating evidence of several biometric feature vec-
tors of the same individual [3] obtained from multiple
information sources. It is generally believed that
fusion at this level ensures better recognition results
than fusion at the later levels (i.e., the decision or
matching score levels) as the features sets typically
contain richer information about the raw biometric
samples [3, 11].

(iii) The Matching Score Level. The matching scores still
contain relatively rich information about the input
biometric samples and it is also rather easy to combine
matching scores of different experts. Consequently,
information fusion at the matching score level is the
most commonly used approach in multibiometric
systems [3]. The matching score data from different
biometric experts may not be homogeneous, may not
be on the same numerical scale, or do not follow the
same probability distribution [3]. These reasons make
score level fusion a demanding problem.

(iv) The Decision Level. This type of fusion is sensible
when the unimodal biometric experts provide access
only to the final stage in the process of biometric
recognition, namely, the final classification result
[3]. Different techniques can be considered at this
level, for example, the AND- and OR-rules, majority
voting, weighted majority voting, and others 3, 9,12].

Among the different types of fusion techniques studied in
the literature, fusion techniques applied at the matching score
level are by far the most popular. This is also evidenced by
Table 1, where a short overview of recent studies on biometric
fusion is presented. Note that matching score level fusion
techniques clearly dominate the research in this area.

When exploiting existing implementations of biometric
experts, such as in our case, not all of the listed fusion levels
are possible. Fusion at the first two levels requires data to
be extracted right after the sample acquisition or the feature
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TABLE 1: A few multibiometric systems discussed in the recent literature.

Author and year

Biometric modalities

Fusion level

Approach used

Nandakumar et al., 2008 [4]

Maurer and Baker, 2008 [38]

Poh et al., 2009 [39]

Lin and Yang, 2012 [40]
Tao and Veldhuis, 2009 [21]
Vatsa et al., 2010 [41]

Poh et al., 2010 [42]

Poh et al., 2010 [43]

Nanni et al., 2011 [44]
Poh and Kittler, 2012 [45]

Nagar et al., 2012 [46]

Tao and Veldhuis, 2013 [47]

Face, fingerprint, speech,
iris

Fingerprint, speech
Face, fingerprint, iris
Face

Face (two face recognition
algorithms)

Face (two face recognition
algorithms)

Face, fingerprint
Face, fingerprint, iris

Fingerprint, palm print,
face

Face, fingerprint
Face, fingerprint, iris

Face, speech

Matching score level

Matching score level,
quality-based fusion

Matching score level
Matching score level

Matching score level,
decision level

Matching score level

Matching score level

Matching score level

Matching score level

Matching score level,
quality-based fusion

Feature level

Matching score level

Likelihood ratio-based fusion

Quality estimates via a Bayesian belief
network (modified sum-rule)
Benchmarking 22 different biometric
fusion algorithms
Enhanced score-level fusion based on
boosting
Optimal fusion scheme at decision
level by AND- or OR-rule (score levels:
sum-rule, likelihood ratio, SVM)
Sequential fusion algorithm
(likelihood ratio test + SVM)
Quality-based score normalization

Addressing missing values in
multimodal system with neutral point
method

Likelihood ratio, SVM, AdaBoost of
neural networks

A general Bayesian framework

Feature level fusion framework using
biometric cryptosystems

Native likelihood ratio via ROC

Cloud service
Face biometrics
(MVC4 applicatiop)

Fingerprint
biometrics

(a) Cloud implementation of face recognition service

(b) Cloud implementation of fingerprint recognition service

F1GURrE 1: [llustration of basic architecture of the biometric cloud services.

extraction process, which is usually not possible, as existing
(e.g., commercial) services commonly do not expose APIs
for accessing the required data (i.e., signals or features).
Existing cloud services typically only allow access to the
decision and/or the matching score level. Hence, these two
levels also form the basis for our assessment presented in the
experimental section.

3. Baseline Systems

To be able to evaluate different strategies for combining
independent implementations of biometric experts into a
multibiometric cloud service, we first require access to
unimodal biometric cloud services. In this section, we briefly
introduce the basics of the unimodal face and fingerprint

services that were used for the evaluation presented in the
experimental section.

3.1. The Cloud Implementations. As we can see from Figure 1,
both (i.e., face and fingerprint) services share a similar archi-
tecture, which is more or less a characteristic for biometric
cloud services. Both services feature a background worker
(i.e., typically implemented in the form of a programming
library), which represents the recognition engine of the
cloud service. The biometric database is implemented in
the form of an SQL database, while the communication
with potential clients of the services is conducted through a
RESTful Interface. Note that both services are implemented
and optimized for the task of biometric verification (and
not biometric identification) and as such are capable of



returning either the verification result (i.e., the class label)
or a matching score indicating the similarity between the
input biometric sample and the template of the claimed
identity. These characteristics are common to most biometric
cloud-based verification systems and define the boundaries
for possible strategies that may be explored for combining
existing implementations of biometric cloud services.

3.2. The Face Recognition Engine. The core component of the
face recognition service is the face recognition engine, which
relies on Gabor-LBP features (LBP-Local Binary Patterns).
Below, we briefly summarize the basics.

(i) Face Detection, Localization, and Preprocessing. Facial
images are first preprocessed to remove illumination
artifacts and then subjected to the Viola-Jones face
detector to extract the facial region [13]. Next, facial
landmark localization with PSEF correlation filters
is performed to find anchor points in the faces that
serve as the basis for geometrical normalization of the
images [14]. The normalized images are rescaled to a
fixed size of 128 x 128 pixels and finally subjected to
the photometric normalization technique presented
by Tan and Triggs in [15].

(ii) Feature Extraction and Supporting Representation. The
main feature representation used by the face recog-
nition service relies on Gabor magnitude responses
and Local Binary Patterns (LBPs). Here, the nor-
malized facial images are first filtered with a bank
of 40 Gabor filters. The Gabor magnitude responses
are then encoded with the LBP operator and local
LBP histograms are computed from patches of all
computed responses. The local histograms are ulti-
mately concatenated into a global feature vector that
forms the template for the given identity. To improve
recognition performance, a vector of the first few
DCT coefficients of the normalized facial image is
also added to the template.

(iii) Verification. In the verification stage, the claim of
identity is validated by comparing the template com-
puted from the test/live/input image to the template
of the claimed identity. Here, the Bhattacharyya
distance is used to measure the similarity between
the histograms of the LBP encoded Gabor magnitude
responses and a simple whitened cosine similarity
measure is used to match the DCT coeflicients.
Both similarity scores are then stacked together
with image-quality measures (see [16] for details—
Q-stack) and the newly combined feature vector is
subjected to an AdaBoost classifier to obtain the final
matching score based on which identity inference is
conducted.

3.3. The Fingerprint Recognition Engine. The core component
of the fingerprint recognition service is the minutiae-based
fingerprint recognition engine first presented in [17]. Below,
we briefly summarize the basics.

Mathematical Problems in Engineering

(i) Segmentation and Image Enhancement. Fingerprint
scans are first subjected to a segmentation procedure,
where the fingerprint pattern is separated from the
background. Through the segmentation procedure,
the processing time is shortened and the matching
accuracy is increased. Since fingerprints are often
degraded due to various external factors, the fin-
gerprint patterns are enhanced by binarizing the
captured fingerprint samples and ridge profiling [18].

(ii) Minutiae Extraction. The minutiae pattern is obtained
from the binarized profiled image by thinning of
the ridge structures, removal of structure imperfec-
tions from the thinned image, and the final process
of minutiae extraction. For each detected minutia,
its type (bifurcation or ending), spatial coordinates
(x, ¥), and the orientation of the ridge containing the
minutia are stored as the templates for each given
identity [18].

(iii) Matching and Verification. Given a claimed identity
and an input fingerprint sample, the claim of identity
is validated by comparing the template computed
from the test/live/input sample and the template cor-
responding to the claimed identity using a minutiae-
based matching algorithm. Here, two fingerprints
match when a sufficient number of minutiae match
by type, location, and orientation.

4. Fusion Strategies

The task of combining different experts into a multiexpert
system is common to many problems in the areas of pattern
recognition and machine learning and is not restricted solely
to the area of biometric recognition. Nevertheless, each
problem has its specifics and it is important to understand
the fusion task in the context of the specific problem one
is trying to solve. The cloud implementations of the two
biometric experts presented in the previous section were
designed for the problem of biometric verification. We,
therefore, commence this section by formalizing the problem
of biometric verification and introducing the fusion task with
respect to the presented formalization. In the second part
of the section, we introduce different fusion strategies and
elaborate on their characteristics.

4.1. Prerequisites. Let us assume that there are N identities
registered in the given biometric system and that these iden-
tities are labeled with w;, w,, ..., w;, ..., wy and that there are
a total of ] biometric experts at our disposal. Furthermore,
let us assume that we are given a feature vector x' of the jth
expert, where j € {1,2,...,]} and a claimed identity w; from
the pool of the N enrolled identities (in general, there could
be a different number of identities enrolled in each of the J
biometric experts, but for the sake of simplicity, we assume
that this number (i.e., N) is the same for all experts). The
aim of biometric verification is to assign the pair (w;,x"”)
to class C; (a genuine/client claim) if the claim of identity is
found to be genuine and to class C, (an illegitimate/impostor
claim) otherwise. Commonly, the validity of the identity
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claim is determined based on the so-called matching score

d"”, which is generated by comparing the feature vector x' to

the template corresponding to the claimed identity w; [19, 20];

that is,

(wnx?) = {Cp if, d < 6 forj e {1,2,....]} "
C,, otherwise,

where 6 stands for the decision threshold. Here, we assume
that small matching scores correspond to large similarities
and large matching scores correspond to small similarities.

In multibiometric systems, several (i.e., J) biometric
experts are available for classifying the given pair (w;,x/),
where i € {1,2,...,N}and j € {1,2,...,]}, with respect to
(1). Thus, after the verification process, the following families
of results are typically available:

e=1{CV|j=12...Lke{1,2},
: )
2={d"j=12..J}

where C,(C]) denotes the classification result and d” is the
matching score produced by the jth expert; k € {1,2}.

Applying different functions on the results of the ver-
ification procedure from (2) gives rise to different fusion
procedures. Some of these procedures that also represent
valid fusion strategies with respect to the two cloud imple-
mentations presented in one of the previous sections are
presented in the remainder of the paper. Note also that we
will assume that J = 2 from this point on, since we only have
two cloud services at our disposal. All presented strategies are,
however, easily extended for the case, where J > 2.

4.2. Decision-Level Fusion Rules. The first strategy for com-
bining the verification results of two independent cloud
implementations of biometric experts one may consider is to
combine the results at the decision level. The decision level
represents the most basic way of combining expert opinions
of several biometric systems. The experts are simply queried

for the classification result Cl(j) (for j = 1,2,...,] and
k € {1,2}) and the results are then combined into the final
decision:

y{c,.C?,....cl} — Y, where k€ {1,2},
3)

where Ci“sed is the combined classification result and k €
{1,2}.

Several options are in general available for choosing the
fusion function y, but two of the most common are the AND-
and OR-rules [21]. In the context of the two cloud-based
biometric experts at our disposal, the two rules, which assume
that the class labels C; and C, are binary encoded, that is,
C, = land C, = 0, are defined as

2 fused 2
Yanp (C,C2) = ci=ed = ¢ & C?, "
4

Yor (Cl(cl)’cl(cZ)) _ C]f(used _ C}({l) | C,(f),

where & and | denote the logical AND and OR operators
and the superscript indices ") and ® stand for the face and
fingerprint experts, respectively, and k € {1, 2}.

While the decision level fusion strategies are easy to
implement and offer a straightforward way of consolidating
experts opinions, potential client applications relying on
these strategies do not possess the flexibility of freely choos-
ing the operating point of the combined biometric system.
Instead, the operating point is determined by the operating
points of the single expert systems.

4.3. Matching-Score-Level Fusion Rules. The second strategy
that can be exploited to combine the verification results of
several biometric experts is fusion at the matching score
level using fixed fusion rules [5]. Most cloud-based biometric
services (including our two) can be queried for a similarity
score rather than the final classification decision. The client
application then implements the classification procedure (see
(1)) using a desired value for the decision threshold 6. Such an
operating mode is implemented in most biometric services
as it gives the client applications the possibility of choosing
their own operating points and, hence, selecting a trade-oft
between security and user-convenience.

The general form for consolidating several expert opin-
ions at the matching score level is

¢:{dM,d?,...,dV} — dv, (5)

where ¢ is the fusion function and d™*® € R represents the

combined matching score that can be exploited for the final
identity inference using (1). Note that the decision threshold
for the fused scores needs to be recalculated for all desired
operating points and cannot be found in the specifications of
the cloud services anymore.

For our assessment presented in the experimental sec-
tion, we implemented two fixed matching-level fusion rules,
namely, the weighted sum-rule and the weighted product-
rule. The two rules are defined as follows:

doun (d7,d?) = d™ = wdV + (1 -w)d?,  (6)

¢PRO (d(l)’d(Z)) — dfused _ (d(l))w ) (d(Z))(I’w), (7)

where the superscript indices " and ® again denote the

face and fingerprint experts, respectively, represents
the combined matching score, and the real-valued w ¢
[0, 1] stands for the weighting factor balancing the relative
importance of the face and fingerprint scores. Note here that
the weighted product-rule in (7) could also be represented
as a weighted log-sum fusion rule making it very similar
to the weighted sum-rule in (6). However, as shown in [9],
the two fusion rules are based on different assumptions. The
interested reader is referred to [9] for more information on
this topic.

It should be emphasized here that the matching scores
of independent biometric systems are typically of a het-
erogeneous nature—they are not on the same numerical

dfused



FIGURE 2: The linear and nonlinear decision boundaries are dis-
played, dividing genuine (in blue) and impostor (in red) classes.

range. Score normalization is, therefore, used to transform
the scores to a common range prior to combining them
[22, 23]. In this work, min-max normalization is used as it is
quite simple and typically gives satisfactory results. Min-max
normalization transforms all the scores to a common range
of [0, 1].

4.4. Fusion with Classifiers. The third strategy one may
consider when combining biometric experts (again at the
matching score level) is to use pattern classifiers. Similar to
the fixed fusion rules presented in the previous section, it
is first necessary to obtain similarity scores from the cloud
services rather than classification labels. Rather than combin-
ing the scores to a single scalar value using fixed rules, the
matching scores are concatenated into “new” feature vectors
which are then classified into one of two classes: “genuine”
or “impostor” (i.e., classes C; and C, in (1)) [3]. In this
setting, the classifier is actually used to indirectly learn the
relationship between the vector of matching scores provided
by the biometric experts and the a posteriori probabilities of
the genuine and the impostor classes [3]. Once trained, the
discriminant function associated with the given classifier can
be used to produce combined matching scores.
The described procedure can be formalized as follows:

£:4dV,d?,. a7 —a™i=5(x), (8
where x' = [d(l),d(z),...,d(])]T denotes the new feature
vector and &(-) stands for the discriminant function of the
given classifier.

The classifier learns a decision boundary between the two
classes, which can be either linear or nonlinear, depending
on the choice of classifier. In Figure 2, where a toy example
is presented, the impostor class is represented with red color
and the genuine class with blue. The straight line represents
a linear decision boundary between the two classes, whereas
the curved line represents a nonlinear boundary. Note that
during verification, any new matching score vector is clas-
sified into the genuine/impostor class depending on which
side of the decision boundary it falls. Thus, most existing
implementations of the most common classifiers return
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the class label instead of the output of their discriminant
functions. However, with a little bit of tweaking, most existing
implementations can be altered to return the output of the
discriminant function as well.

Different from the fixed fusion rules, classifiers are capa-
ble of learning the decision boundary irrespective of how
the feature vectors are generated. Hence, the output scores
of the different experts can be nonhomogeneous (distance
or similarity metric, different numerical ranges, etc.) and
no processing is required (in theory) prior to training the
classifier [3].

In the experimental section, we assess the relative use-
fulness of the classifier-based fusion strategy based on two
classifiers: a Support Vector Machine (SVM) (with a linear
kernel) [24, 25] and a Multilayer Perceptron (MLP) [26]
classifier. The former falls into the group of linear classifiers
(in our case), while the latter represents an example of a
nonlinear classifier.

5. Experiments

5.1. Database, Protocol, and Performance Measures. To eval-
uate the different fusion strategies, a bimodal chimeric
database is constructed from the XM2VTS and FVC2002
databases [27, 28]. A chimeric database represents a database
in which biometric modalities from different databases are
combined and assigned common identities. Since the bio-
metric samples in the initial databases are not taken from
the same identities, this procedure creates artificial (chimeric)
subjects. Note that such a procedure is reasonable due to
the fact that biometric modalities are generally considered to
be independent one from another (e.g., a facial image says
nothing about the fingerprint of the subject and vice versa)
[29]. The constructed chimeric database consists of facial
imagery and fingerprint data of 200 subjects with each subject
having a total of 8 biometric samples for each modality. A few
sample images from the chimeric database are presented in
Figure 3.

For the experiments, the data is divided into two disjoint
parts of 100 subjects (with 8 biometric samples per each
modality). The first part is used for learning open hyper-
parameters of the fusion procedures (e.g., fusion weights,
decision thresholds, etc.), while the the second is used for
evaluating the fusion techniques on unseen testing data
with fixed hyperparameters. Each of the experimental runs
consists of enrolling each of the 800 biometric samples
(i.e., face and fingerprint samples) from the given part into
the corresponding (biometric) cloud service and matching
the same 800 samples against all enrolled samples. This
experimental setup results in 640, 000 matching scores (800 x
800) for the training and testing parts, out of which 6400
correspond to genuine verification attempts and 633600
correspond to illegitimate verification attempts. Note that
prior to the experiments the matching scores are normalized
using min-max score normalization [23].

For evaluation purposes, standard performance measures
typically used in conjunction with two-class recognition
problems are adopted, namely, the false acceptance error rate
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IDs: 0001

(FAR) and the false rejection error rate (FRR). The two error
rates are defined as [30-33]

7
0003 0004 0005
FIGURE 3: Sample images from the constructed chimeric database.
where
0,001 = argmin [FAR (0) — 0.0001] . (15)
0

Hdimp | dimp < GH

FAR (0) = ,
[{ |
)
dgi ldg; >0
FRR(G) _ H cli | di > }l’
l{dcli}l
where {d;} and {d,,,,} represent sets of client and impostor

scores generated during the experiments, | - | denotes a
cardinality measure, and 0 represents the decision threshold,
and the inequalities assume that dissimilarity measures were
used to produce the matching scores (it is assumed that large
similarities between biometric samples result in small values
of the matching scores and vice versa).

Note that both error rates, FAR and FRR, represent
functions of the decision threshold 0. Selecting different
values of the decision threshold, therefore, results in different
error rates that form the basis for various performance
metrics. In this paper, three such metrics are used, namely,
the equal error rate (EER), which is defined with the decision
threshold that ensures equal values of the FAR and FRR on
the training set, that is,

EER = - (FAR(6,,,) + FRR (0,,,)) (10)

eer

0| =

where

Ocer = argemin |FAR (0) — FRR ()], (1)
the verification rate at the false acceptance error rate of 0.1%
(VER@0.1FAR), which is defined as

VER@0.1FAR = 1 - FRR (6,,0;) » (12)
where

0

ver(Q1

= argmin |FAR (6) — 0.001], (13)
0

and the verification rate at the false acceptance error rate of
0.01% (VER@0.01FAR):

VER@0.01FAR = 1 — FRR (6,.,001 ) » (14)

The presented performance metrics are typically computed
based on client and impostor score populations generated on
the training data. To obtain an estimate of the generalization
capabilities of a given fusion technique on unseen data, the
thresholds 0..,, Oyer01> and 0,00, are applied to client and
impostor score populations generated on the evaluation data.
Thus, during test time, the FAR and FRR defined in (9) are
computed based on the fixed thresholds and then combined

into the half-total error rate (HTER) as follows:
HTER (6;) = % (FAR, (6;) + FRR, (6)), (16)

where k € {eer,ver0l,ver001} and the subscript index ,
indicates that the error rates FAR and FRR were computed on
the evaluation set. Alternatively, it is also possible to evaluate
the verification rate and the false acceptance error rate at a
specific decision threshold set during training; that is,

VER, (0;) =1-FRR,(6;), withFAR,(6,), (17)
where, in our case, k again stands for k € {eer, ver01, ver001}.

In addition to the quantitative performance metrics,
performance curves are also used to present the results of the
experiments. Specifically, Receiver Operating Characteristic
(ROC) Curves and Expected Performance Curves (EPC) are
generated during the experiments to better highlight the
differences among the assessed techniques [34]. ROC curves
plot the dependency of the verification rate (VER) and the
false acceptance rate (FAR) with respect to varying values
of the decision threshold 6. ROC curves are usually plotted
using a linear scale on the x- and y-axes; however, to better
highlight the difference among the assessed procedures at the
lower values of the false acceptance rate, a log scale for the
x-axis is used in this paper.

To generate EPC, two separate image sets are needed.
The first image set, that is, the training set, is used to find
a decision threshold that minimizes the following weighted
error (WER) for different values of a:

WER (0, &) = «FAR (0) + (1 — ) FRR (0), (18)



0.8

0.6 +

0.4

Verification rate (VER)

0.2t

0
1073

1072 107! 10°
False acceptance rate (FAR)

—— Face modality

()

Mathematical Problems in Engineering

Verification rate (VER)

0 L L
107 1072 107! 10°
False acceptance rate (FAR)

—— Fingerprint modality

()

FIGURE 4: ROC curves of the experiments: face recognition (a) and fingerprint recognition (b).

TABLE 2: Quantitative comparison of the biometric modalities.

Procedure EER VER@0.1FAR VER@0.01FAR
Face 0.0720 0.6394 0.3748
Fingerprint 0.0163 0.9691 0.9556

where « denotes a weighting factor that controls the relative
importance of the FAR and FRR in the above expression.
Next, the second image set, that is, the testing/evaluation
image set, is employed to estimate the value of the HTER
at the given « and with the estimated value of the decision
threshold 6. When plotting the HTER (obtained on the
testing/evaluation image sets) against different values of the
weighting factor «, an example of an EPC is generated [35].

5.2. Single Expert Assessment. Before evaluating the feasibil-
ity and efficiency of different strategies for combining the
cloud implementations of the biometric experts, it is neces-
sary to establish the baseline performance of the unimodal
biometric systems, that is, the face and fingerprint systems.
To this end, the training data (note that the data used during
this series of experiments represents the training data for
the fusion techniques; for the unimodal systems, data is still
valid testing/evaluation data) from our chimeric database is
used to generate all of the relevant performance metrics and
performance curves introduced in the previous section. The
results of the experiments are presented in the form of ROC
curves in Figure 4 and with quantitative performance metrics
in Table 2.

As expected, the fingerprint recognition system performs
much better than the face recognition system, especially at the
lower values of the false acceptance error rates. At the equal
error rate, for which the cloud-based biometric experts were
also optimized, the face modality results in an error of around

7%, while the fingerprint modality ensures an error rate of a
little more than 1.5%.

It is interesting to look at the distribution of the client
and impostor similarity scores of the single experts in the
fingerprint—versus face-score—space; see Figure 5. Since the
optimal decision boundary appears to be different from a hor-
izontal or vertical line (this would correspond to conducting
identity inference based on one of the biometric experts),
performance gains (at least on the matching score level)
can be expected by combining the two experts. Different
strategies for doing so are evaluated in the remainder.

5.3. Assessing Decision-Level Strategies. One possible strategy
for combining the outputs of the cloud implementations of
the face and fingerprint recognition experts is to consolidate
the opinions of the two experts at the decision level. In
this setting, the cloud services are asked to make a decision
regarding the validity of the identity claim made with the
given biometric sample. Since no similarity scores are sent
to the client application, the operating point (i.e., the ratio of
the FAR and FRR) of the cloud recognition service cannot be
changed and is determined by the settings on the service side.
In our case, the operating point of the cloud services is set to
the equal error rate (EER).

Two decision-level fusion schemes are implemented
for the experiments, namely, the AND- and OR-rules, as
described in Section 4. The results of the experiments (on the
training data) are shown in Table 3 in the form of various
performance metrics. Note that it is not possible to generate
ROC curves for this series of experiments, since no similarity
scores are available.

Several observations can be made based on the presented
results. Both fusion strategies result in similar performance
in terms of the HTER with the difference that the AND-
rule favors small FARs, while the OR-rule favors small
FRRs. When compared to the performance of the single
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TABLE 3: Quantitative comparison of the decision-level fusion rules
(training data).

Procedure HTER FAR FRR
AND-rule 0.0440 0.0011 0.0869
OR-rule 0.0440 0.0862 0.0014

expert systems presented in Table 2, the decision-level fusion
schemes performed better than the face expert but a little
worse than the fingerprint expert. All in all, the decision-
level fusion rules did not prove to be too useful for improving
the recognition performance of the single expert systems
but should rather be considered as a way of changing the
operating point of the combined system toward lower FARs
or FRRs in cases where only decision-level outputs can be
obtained from cloud implementations of biometric experts.

5.4. Assessing Matching-Score-Level Strategies. When assess-
ing matching-score-level strategies for combining the two
biometric experts, we first focus on the fixed fusion rules and
present experiments related to classifier fusion strategies in
the second part of this section.

The performance of the sum and product fusion rules
is first examined on the training part of the constructed
chimeric database. Before reporting the final performance, it
is necessary to find (or learn) appropriate values for the open
hyperparameter w of the sum and product fusion rules ((6)
and (7)). To this end, the value of w is gradually increased
from 0 to 1 with a step size of 0.1 and the values of EER,
VER@0.1IFAR, and VER@0.01FAR are computed for each
value of w. The results of this series of experiments are shown
in Figure 6. Note that both the sum and product fusion rules
peak in their performance at a value of w = 0.3. This value is,
therefore, selected for both fusion rules for all the following
experiments.

To compare the performance of the sum and product
fusion rules with fixed hyperparameters to that of the single
expert systems, we generate ROC curves from the scores
obtained on the training part of the chimeric database.
The performance curves are shown in Figure7 and the

corresponding performance measures in Table 4. Note that
the sum and product fusion rules perform very similarly;
both are significantly better than the unimodal (single expert)
systems. The EER, for example, falls by more than 50% with
both fusion rules when compared to the better performing
single expert system. While these results are encouraging,
it needs to be taken into account that the ROC curves for
the fusion techniques shown in Figure 7 were generated by
optimizing the open hyperparameter w on the same data
that was used for constructing the curves in the first place.
This means that the performance of the fusion techniques
may be somewhat biased. To analyze this issue, we present
comparative experiments on the evaluation/testing data of
the constructed chimeric database in Section 5.5.

Next to fixed fusion rules, the second possibility for
combining the similarity scores of the single expert systems is
to stack the similarity scores into a two-dimensional feature
vector and use the constructed vector with a classifier. To
evaluate this possibility, the training part of the chimeric
database is used to train SVM (Support Vector Machine
[24, 25]) and MLP (Multilayer Perceptron [26]) classifiers.
For the SVM classifier, a linear kernel is selected, and for
the MLP classifier, an architecture with two hidden layers
(each with 5 neurons) is chosen. This setting results in a
classifier capable of finding linear decision boundary between
the client and impostor classes (i.e., the SVM) and a classifier
capable of setting the decision boundary in a nonlinear
manner (i.e., the MLP). Once trained, both classifiers are
applied to the training data to compute performance metrics
and construct performance curves. The results of this series of
experiments are shown in Figure 8 and Table 5. Note that with
most existing software solutions for training SVM and MLP
classifiers (see, e.g., [36, 37]) a little of tweaking is needed
to obtain the similarity scores required for constructing
ROC curves, as the classifiers usually output only class
labels. When looking at the performance of the SVM and
MLP classifiers, it is obvious that they did not ensure any
additional performance improvements when compared to
the fixed fusion rules. While this could be expected for
the linear SVM classifier, it is somehow unexpected that
the MLP classifier did not improve the performance over
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FIGURE 6: EERs, VER@0.1FARs, and VER@0.01FARs for the sum and product fusion rules for different values of the hyperparameter w.

the fixed sum and product fusion rules. It seems that, without
any additional information such as quality or confidence
measures, it is extremely difficult to significantly improve
upon the performance fixed fusion rules on our chimeric
database.

5.5. Generalization Capabilities of Different Strategies. The
last series of verification experiments aimed at examining
the generalization capabilities of the fusion strategies on
the evaluation/testing part of the chimeric database. Here,
all decision thresholds and hyperparameters of all assessed
fusion strategies are fixed on the training part of the data. The
testing/evaluation data is then used to generate performance
metrics and curves, which are shown in Figure 9 and Table 6
for this series of experiments.

The first thing to notice from the presented results is the
fact that, similar to the training data, all fusion strategies
(except for the decision-level fusion techniques) result in
performance improvements when compared to either of the
two single expert systems. Next, the performance achieved on
the training data is also achieved on the evaluation/testing
data, which suggests that no overfitting took place during
training. Especially important here is also the fact that all
results are very well calibrated indicating that a desired
operating point (i.e., the ratio between the FAR and FRR)
can easily be selected and maintained even after the fusion
process.

Last but not least, it is also important to stress that,
among the matching-score-level fusion strategies, no particu-
lar strategy has a clear advantage in terms of performance on
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TABLE 4: Quantitative comparison of the fusion rules with learned
parameter w (w = 0.3 for both techniques)—training data.

Procedure EER VER@0.IFAR VER@0.01IFAR
Product-rule 0.0066 0.9866 0.9733
Sum-rule 0.0063 0.9875 0.9736

our chimeric database. This suggests that other criteria next to
performance should be taken into account when selecting the
best strategy for combining different cloud-based biometric
experts.

5.6. Subjective Analysis. In the previous sections, different
fusion strategies for combining cloud implementations of
biometric experts were assessed only from the perspective
of performance. However, when combining different bio-
metric experts into a multibiometric system, other criteria
are important as well. One may, for example, be interested
in how existing client applications need to be modified to
enable multiexpert biometric recognition, how difficultitis to
reach a specific operating point in the multibiometric system,
whether additional libraries need to be included in the client
applications, and so forth. To evaluate the fusion strategies
based on other (nonperformance related) criteria as well, a
grade (low—L, medium—M, or high—H) was assigned to
each strategy in seven different categories (note that these
grades are of a subjective nature and reflect the perception
of the authors). These categories include the following.

(i) Training complexity: the complexity of the training
procedure for the given fusion strategy (e.g., training
the classifier, setting hyperparameters, etc.).

(ii) Run-time complexity: the run-time complexity
required to apply the given fusion strategy to the data
(e.g., applying the trained classifier to the data, etc.).
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FIGURE 8: ROC curves for fusion techniques with classifiers (train-
ing data).

TABLE 5: Quantitative comparison of fusion techniques with classi-
fiers (training data).

Procedure EER VER@0.IFAR VER@0.01FAR
SVM 0.0064 0.9869 0.9733
MLP 0.0063 0.9881 0.9731

(iii) Storage requirements: memory requirements for stor-
ing metadata needed by the given fusion strategy (e.g.,
for storing support vectors, hyperparameters, etc.).

(iv) Performance gains: performance related criterion that
reflects the results of the experiments conducted in
the previous sections.

(v) Client disturbance: relating to the amount of work
needed to rewrite existing client applications and the
need for including additional external resources (e.g.,
programming libraries, etc.).

(vi) Calibration: referring to the generalization capabil-
ities of the given fusion strategy and the capability
of ensuring the same operating point across different
data sets.

(vii) OP complexity: relating to the complexity of setting a
specific operating point for the multibiometric system
(e.g., the EER operating point, etc.).

Our ratings are presented in Table 7 in the form of grades
and in Figurel0 in the form of Kiviat graphs. With the
generated graphs, a larger area represents a more suitable
fusion strategy according to the selected criteria (note that
the same weight has been given here to all criteria. If a certain
criterion is considered more important than others, this could
be reflected in the final Kiviat graphs).

Note that the fixed fusion rules (i.e., the sum- and
product-rules) turned out to be suited best for combining
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TABLE 6: Quantitative comparison of the fusion rules on the evaluation/testing data. Here, the symbol n/a stands for the fact that this value
is not computable.

@eeer @GverOI @GverOOI
HTER, VER, FAR, HTER, VER, FAR, HTER, VER, FAR,
Face 0.0716 0.9280 0.0712 0.1808 0.6394 0.0010 0.3126 0.3748 9.95g - 5
Fingerprint 0.0133 0.9897 0.0162 0.0096 0.9819 0.0012 0.0129 0.9744 1.78e — 4
Sum-rule 0.0045 0.9973 0.0064 0.0034 0.9944 0.0011 0.0061 0.9880 114 - 4
Product-rule 0.0046 0.9972 0.0065 0.0033 0.9945 0.0011 0.0063 0.9875 1.25E — 4
AND-rule 0.0411 0.0811 0.0012 n/a n/a n/a n/a n/a n/a
OR-rule 0.0411 0.0013 0.0863 n/a n/a n/a n/a n/a n/a
SVM 0.0046 0.9972 0.0063 0.0032 0.9947 0.0011 0.0060 0.9881 136 — 4

MLP 0.0046 0.9973 0.0066 0.0036 0.9939 0.0012 0.0062 0.9877 1.10E — 4
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TaBLE 7: Comparison of the fusion strategies based on the perception of the authors and conducted experimentation. High, medium, and

low are denoted by H, M, and L, respectively.

Fusion Training Run-time Storage Performance Client Calibration op
technique complexity complexity requirements gains disturbance complexity
Sum-rule L L L M L H L
Product-rule L L L M L H L
AND-rule L L L L L L H
OR-rule L L L L L L H
SVM H M M M M H M
Neural M L L M M H L
network
Training Training
complexity complexity
OP complexity Run-time OP complexity

complexity

L Storage
requirements

Calibration

Client

. Performance
disturbance

gains
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FIGURE 10: Kiviat graphs of the fusion techniques generated based on the selected evaluation criteria.

different cloud implementations of biometric experts into
a multibiometric system as they provide a good trade-
off between the complexity of the training and run-time
procedures, expected performance gains, flexibility in setting
the operating point, calibration, and the need for modifying
existing client applications.

6. Conclusion

We have presented an analysis of different strategies for
combining independent cloud implementations of biometric

experts into a multibiometric recognition system. For the
analysis, we used our own implementations of cloud-based
face and fingerprint verification services and a specially
constructed chimeric database. The results of our analysis
suggest that fixed fusion rules that combine the single expert
systems at the matching score level are the most suitable for
the studied task as they provide a good trade-oft between
expected performance gains and other important factors such
as training complexity, run-time complexity, calibration, and
client disturbance. As part of our future work, we plan to
examine possibilities of including confidence measures in
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the fusion strategies, as these have the potential to further
improve the recognition performance of the combined multi-
biometric system. We also plan to develop biometric cloud
services combining more than two single expert systems.
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