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Computer Engineering Department
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Abstract

Supervised Descent Method (SDM) has proven success-

ful in many computer vision applications such as face align-

ment, tracking and camera calibration. Recent studies

which used SDM, achieved state of the-art performance on

facial landmark localization in depth images [4]. In this

study, we propose to use ridge regression instead of least

squares regression for learning the SDM, and to change fea-

ture sizes in each iteration, effectively turning the landmark

search into a coarse to fine process. We apply the proposed

method to facial landmark localization on the Bosphorus

3D Face Database; using frontal depth images with no oc-

clusion. Experimental results confirm that both ridge re-

gression and using adaptive feature sizes improve the local-

ization accuracy considerably.

1. Introduction

Landmark localization is a crucial initial step for face

processing applications. Such applications include but are

not limited to biometrics [1], facial expression recogni-

tion [15], age estimation [8] and sign language recogni-

tion [3]. In biometrics applications, the localized landmarks

are used to align faces before matching or to extract local

features. On the other hand, in facial expression analysis

and sign language recognition, the landmarks are tracked

through time to extract features in the spatio-temporal do-

main. For all these different applications a better landmark

localization results in a better performance of the overall

system. Most of the systems use 2D images since 2D im-

ages are easy to acquire using commonly available 2D cam-

eras. However, 2D face images are vulnerable to illumina-

tion and pose changes. The availability of inexpensive depth

cameras has led to the widespread use of 3D face images,

which overcome these difficulties. Therefore, the develop-

ment of a reliable 3D facial landmark localization method

has become essential.

Facial landmark localization methods generally utilize

heuristic approaches as well as statistical methods. Heuris-

tics rely on unique properties of the facial landmarks on the

face: For example, the nose tip resides on the symmetry axis

of the face and can be localized using the shape properties.

Similarly, the corners of the eye and mouth can easily and

successfully be localized by heuristics using shape prop-

erties. Such an example to these methods is [1] in which

Alyüz et al. propose a heuristic method which uses curva-

ture information, symmetry axis and shape index to locate

the nose tip, nose and eye corners in 3D faces.

Statistical 3D landmark localization methods also exploit

the features of facial landmarks such as local texture and

shape. Unlike heuristic-based approaches which require a

unique rule for each landmark, feature statistics are utilized

in a uniform approach for all landmarks. Most recent sta-

tistical methods also use the shape information represented

by the facial landmarks. Creusot et al. [5] propose a sta-

tistical facial landmark localization method utilizing shape

information in addition to the local features of landmarks.

Several candidates are identified on a local 3D mesh and the

most probable candidate is identified through shape anal-

ysis. Another statistically motivated method using shape

information proposed by Sukno et al. [14] localizes facial

landmarks under occlusion and expression changes. In [14],

the shape context of facial landmarks is used together with

local feature analysis. Different subsets of candidate points
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are evaluated, resulting in robustness against missing land-

marks due to occlusions. A similar concept for estimating

occluded 3D landmarks is also proposed in [2] where par-

tial Gappy Principal Component Analysis is used to restore

missing landmark coordinates. In another study Farrelli et

al. [9] proposed a random forest based framework in which

patches extracted from depth images cast votes to localize

facial landmarks.

The Supervised Descent Method (SDM) [16] was pro-

posed to solve nonlinear optimization problems by turning

the problem into a least squares form and applying regres-

sion. In 2D domain, SDM has been proven to be successful

for facial landmark localization. Recently Camgoz et al. [4]

achieved state of the art performance on facial landmark

localization in 3D depth images using SDM. They experi-

mented with Scale-Invariant Feature Transform (SIFT) [11]

and Histogram of Oriented Gradients (HOG) [6] features

for localization and showed that both methods yield accu-

rate localization results. Taking [4] as a baseline, we pro-

pose to use ridge regression for Supervised Descent Method

(which we call Supervised Ridge Descent) instead of least

squares regression for facial landmark localization in depth

images. Additionally we propose to change feature sizes in

each iteration in a coarse to fine fashion. In this way, we

aim to capture more details in later iterations by focusing

on smaller regions.

In Section 2, we briefly explain the Supervised Descent

Method and give the details of ridge regression extension.

In Section 3 we report the experimental results conducted

on the Bosphorus 3D face database and compare the per-

formance of the proposed method with the state of the art

approaches. Finally, we evaluate the findings of this study

and discuss future work in Section 4.

2. Proposed Method

2.1. Supervised Descent Method (SDM)

The Supervised Descent Method has achieved state of

the art performances in several computer vision applica-

tions which previously relied heavily on nonlinear opti-

mization methods [16, 17]. Xiong et al. [16] proposed to

approach the non-linear optimization by learning the de-

scent directions from a training set and then use these pre-

viously learned descent directions on new unseen test sam-

ples. SDM’s best known application is facial landmark lo-

calization, also known as the IntraFace [7]. It has been used

to achieve state of the art performances in face tracking and

alignment.

Facial landmark localization using SDM starts with cre-

ating an average face shape which provides initial land-

mark locations for the facial images. At the beginning of

the training, landmarks are placed in these initial locations

(x0). Then the shape increment (∆x) required to displace

the landmarks from their current location (xk) to its ground

truth location (x∗) is calculated. This is written as a func-

tion of the features extracted from the current shape esti-

mate (φk) as:

∆xk = x∗ − xk = Rkφk + bk (1)

To estimate the parameters of this function, Rk and bk,

the problem is written in least squares format as in Equation

2, where i and k represent the sample and iteration indices,

respectively.

argmin
Rk,bk

∑

xi

k

∥

∥∆xi
k −Rkφ

i
k − bk

∥

∥

2
(2)

By using the closed form solution of least squares regres-

sion, both Rk and bk parameters are estimated. Then Rk

and bk are used to update the location of the landmark as:

xk+1 = xk +Rkφk + bk (3)

The training procedure continues until the landmarks

converge to the actual positions. When a test sample comes,

landmarks are placed in their initial positions (x0) and their

positions are updated using Equation 3.

2.2. Supervised Ridge Descent (SRD)

SDM was originally designed to use least square regres-

sion (LSR) to estimate its predictor parameters. While using

LSR, one needs to take the inverse of the XTX matrix, X

being the observations of predictors. However, the XTX

matrix becomes singular when the observation size is large

and/or the predictors are strongly correlated. To overcome

the singularity issue Xiong et al. [16] proposed to use PCA

to regularize their matrix before taking the inverse of it.

In this study we propose to use ridge regression (RR) in-

stead of LSR, in which the matrix singularity issue is dealt

by adding a ΓTΓ matrix to the XTX matrix, Γ being the

regularization term which is proportional to the identity ma-

trix. Although we lose precision by taking the inverse of

ΓTΓ + XTX instead of XTX , we avoid over-fitting and

large variances in the estimators.

Our formalization of ridge regression can be seen in

Equation 4, in which βk, λk, bk represent the estimator, reg-

ularization term and offset parameter of the kth iteration,

respectively. The rest of the parameters ∆xi
k and φi

k rep-

resent the landmarks’ distance from the ground truth and

their features in these positions of the ith sample, respec-

tively. As in [4] and [17] we used HOG features as facial

landmark descriptors. However, in each iteration, the size

of the HOG features and the regularization term’s value has

been decreased to be able to descend more precisely to the

ground truth.
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argmin
βk,bk

∑

xi

k

∥

∥∆xi
k − φi

kβk − bk
∥

∥

2
+ ‖λkβk‖

2
(4)

To calculate the ridge regression estimator, βk, for each

iteration, we use Equation 5 in which I and λk represent

the identity matrix with the same size as the observation

matrix and the regularization term of the kth iteration. Φk

and ∆Xk are constructed by concatenating each training

samples’ HOG features and distances from the ground truth

into two matrices, respectively. Note that both the feature

matrix Φk and shape increment ∆Xk are normalized to zero

mean before regression.

βk = ((Φk)
TΦk + λkI)

−1(Φk)
T∆Xk (5)

After learning the ridge regression estimator, βk, and cal-

culating the offset bk for each iteration, we use Equation 6

to localize facial landmarks starting from the initial points

which are defined by the average landmark positions of the

training samples.

xi
k+1 = xi

k + φi
kβk + bk (6)

In Equation 6 φi
k, xi

k+1
and xi

k represent the ith sample’s

HOG features of the kth iteration and the same sample’s fa-

cial landmarks’ locations of the k + 1th and kth iterations,

respectively.

3. Experimental Results

To evaluate the proposed method, we experimented on

the commonly used Bosphorus 3D Face Database [12]. The

Bosphorus database contains 4666 face samples belonging

to 105 users. Each sample’s 2D color image, 3D point cloud

and manually annotated 24 facial landmark positions are

provided by the database. The Bosphorus database contains

a variety of pose and facial expression variations as well as

occluded faces, making it a challenging database.

In our experiments, we worked on samples with frontal

poses which had no occluding objects covering the face.

22 of the 24 facial landmarks were selected to be localized

since the other two are ear dimples and are not visible in

frontal images. Selected landmarks are eye, mouth, nose

and eyebrow corners, middle points of lips, eyebrows, nose,

chin, and the nose saddles, all of which can bee seen in Fig-

ure 1.

We compared our method with the state of the art 3D

facial landmark localization methods methods working on

depth images. A summary of these methods are given in Ta-

ble 1. To be able to compare our method with the most suc-

cessful Sukno et al. [14] and Camgoz et al. [4], whom are

both using statistical facial landmark localization methods,

we used the same experimental setup as theirs and reported

Figure 1: 22 landmarks used in our experiments

our results on 10 landmarks, which are common to all meth-

ods. We selected the frontal non-occluded face samples and

divided them into two folds in which the users were exclu-

sive to their groups. All the experiments have been done

using two-fold cross validation and we iterated Supervised

Ridge Descent (SRD) six times since it usually converges

after the fourth iteration.

In our first experiments, our aim is to find

the optimum λk values and HOG feature sizes.

Our experiments yield optimum λk values to be

[300.00, 110.40, 40.60, 14.94, 5.49, 2.02, 0.74] and HOG

feature sizes to be [0.20, 0.17, 0.14, 0.12, 0.09, 0.06] ×
ImageSize for the iterations from one to six, respectively.

The SRD method has two main novelties when com-

pared to the SDM: 1) the use of ridge regression and 2)

the use of adaptive feature sizes from coarse to fine reso-

lution. In order to evaluate the independent contributions

of these novelties, we performed several experiments by in-

crementally adding ridge regression and adaptive features to

the classical SDM. As shown in Table 2, using ridge regres-

sion instead of least squares regression improves the perfor-

mance drastically (See columns SDM and SRD with Fixed

Feature Size). Similarly, using adaptive features instead of

fixed features increases the performance for both SDM and

SRD approaches (See SDM vs. SDM with Adaptive Fea-

ture Size columns and SRD vs. SRD with Fixed Feature

Size columns). By incorporating both ridge regression and

adaptive features, our SRD approach attains the best overall

results (See column SRD).

As observed from Table 2, our best performing land-

marks are eye and mouth corners, which have strong ge-
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#LM # Training Size # Test Size Features Method Used

Alyüz et al. [1] 5 − 2902 Shape Index Heuristics

Creusot et al. [5] 14 99 2803 Surface Descriptors LDA and Adaboost

Sukno et al. [14] 14 1402 x 2 1402 x 2 ASPC [13] Statistical Shape Models

Camgoz et al. [4] 10 1446 x 2 1446 x 2 SIFT [11] - HOG [6] SDM [16]

SRD (Our method) 22 1420 x 2 1420 x 2 HOG [6] SDM [16] - Ridge Regression [10]

Table 1: Summary of the proposed method and the state of the art methods (LM = Landmarks)

ometric characteristics. However, our method struggled to

localize chins and nose saddles which are difficult to locate

accurately even by manual annotation. These findings were

also backed up as we visualized the best and worst perform-

ing facial samples which can be seen in Figure 3. It can be

seen from Figure 3 that ground truth locations of nose sad-

dles differ for each subject which is probably due to the

subjective preferences of the manual annotators.

To see if these results are consistent with all the samples

we created the cumulative error distribution, which can be

seen in Figure 2. By analyzing the curves of chin and nose

saddles, we can confirm that both of these landmarks are

problematic landmarks and their error is distributed over the

whole database. This may be caused by false annotation of

the data, as previously mentioned these landmarks are more

ambiguous than the others.

To compare our method with the the state of the art meth-

ods, we used a subset of 10 points that most methods re-

ported results on. As it can be seen in Table 3 the pro-

posed method achieves the state of the art performance on

all landmarks except the nose tip. Considering the manual

annotation error for the nose tip (2.96mm, see Table 3), our

average automatic localization error (2.65mm) can still be

considered as not too high.

4. Conclusion

Many applications rely on the analysis of facial data to

analyze, recognize and understand humans and their behav-

iors. Many of these applications start with facial landmark

localization to be able to either align faces or track these

landmarks. Thus a successful facial landmark localization

is essential to the success of various facial processing tasks.

In this study, we use ridge regression to train Supervised

Descent Method instead of the least squares method. We

also use decreasing feature sizes in each iteration, which be-

come smaller as the system iterates, turning the localization

into a coarse to fine approach. Our experiments show that

both improvements increase the performance significantly.

SRD was trained using HOG features in a similar man-

ner to SDM. We experimented on the Bosphorus 3D Face

Database and compared our method with the state of the

art methods, which work on 10 common facial landmarks

of the Bosphorus database, namely, eye corners, nose tip,

nose corners, mouth corners and chin. Except for the nose

tip, our approach achieved the best performance on all land-

marks. However, our nose tip error is close to human anno-

tation done by [1], which may indicate that the annotation

variance may be the reason of this behaviour.

To improve our system, we plan to use 3D descriptors

instead of 2D descriptors. To generalize our system, cross

database experiments should also be conducted. Further-

more, feature learning methods can be used to learn features

instead of using descriptors such as HOG, or structured it-

eration strategies may be implemented.
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