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Abstract
The paper presents a novel framework to 3D face recog-
nition that exploits region covariance matrices (RCMs),
Gaussian mixture models (GMMs) and support vector
machine (SVM) classifiers. The proposed framework first
combines several 3D face representations at the feature
level using RCM descriptors and then derives low-dimens-
ional feature vectors from the computed descriptors with
the unscented transform. By doing so, it enables compu-
tations in Euclidean space, and makes Gaussian mixture
modeling feasible. Finally, a support vector classifier is
used for identity inference. As demonstrated by our ex-
perimental results on the FRGCv2 and UMB databases,
the proposed framework is highly robust and exhibits de-
sirable characteristics such as an inherent mechanism for
data fusion (through the RCMs), the ability to examine lo-
cal as well as global structures of the face with the same
descriptor, the ability to integrate domain-specific prior
knowledge into the modeling procedure and consequently
to handle missing or unreliable data.

1 Introduction

Personal recognition based on 3D facial images is be-
coming increasingly popular mainly due to its potential
market value and its desirable characteristics, such as in-
herent robustness to illumination or pose changes. Nev-
ertheless, there are still a number of open issues, as em-
phasized by various surveys, e.g., [1], pertaining mainly
to recognition in the presence of varying facial expres-
sions, partial occlusions of the facial area and the overall
reliability of the recognition procedure.

In this paper we build upon the framework originally
introduced in [2] and present an updated framework for
3D face recognition, which again capitalizes on region
covariances and Gaussian mixture models (GMMs), but
adds several new steps to the processing chain. Within
the proposed framework a 3D face image is first repre-
sented by a number of region covariance matrices com-
puted from regions of different sizes. These matrices en-
sure that the 3D face images are described in a highly
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discriminative manner and form the foundation for our
modeling procedure. As the matrices reside in Rieman-
nian and not Euclidean space they cannot be subjected
directly to the GMM construction step. To overcome this
issue, we employ the unscented transform [3] and pro-
duce a number of feature vectors from each of the region
covariance matrices and finally use these vectors as input
to our modeling stage. Once the GMM model is com-
puted from the input image a SVM classification scheme
is used to make a decision regarding the identity of the 3D
face image originally presented to the recognition frame-
work. The proposed framework has a number of desir-
able characteristics, such as an inherent mechanism for
data fusion (through the region covariance matrices), the
ability to examine the facial images at different levels of
locality, to handle missing data, etc.

The rest of the paper is structured as follows: in Sec-
tion 2 we introduce the proposed framework and describe
all of its parts and characteristics. In Section 3 we present
some experiment and highlight the merits of the proposed
methodology. We conclude the paper in Section 4.

2 Proposed methodology

2.1 Overview
Fig. 1 depicts a simplified block diagram of the proposed
3D face recognition framework. The first procedural step
of the framework is the acquisition of the 3D face im-
age. The data acquisition step is followed by a registra-
tion and preprocessing procedure, where the facial region
is cropped from the 3D scan and any holes and spikes po-
tentially present are removed. In the next step, the pre-
processed 3D facial data is mapped into a data structure
that we will refer to as acomposite representationin the
remainder of the paper. The composite representation is
then processed on a block-by-block basis and region co-
variance matrices (RCM) are extracted from each exam-
ined block. Note that different from most other feature
extraction techniques, RCM descriptors can be extracted
from regions of variable sizes, thus, allowing to extract
discriminative information from the data at local as well
as global levels. Furthermore, the descriptors provide an
elegant way of combining different representations of 3D
data into a coherent feature vector. After the RCM ex-
traction procedure each face is represented by a number
of RCM descriptors, whose distribution can be modeled



Figure 1: Conceptual diagram of the proposed framework

by a GMM. Here, GMMs are selected for modeling pur-
poses, since they allow to incorporate prior knowledge
into the modeling procedure and are easily adopted to
handle unreliable or missing (i.e., occluded) data. Finally,
a SVM-based classification scheme is employed to clas-
sify the super-vectors derived from the GMMs. In the
remainder we elaborate on all presented steps.

2.2 Data preprocessing
Raw 3D face images, which represent the input to our
framework, are initially low-pass filtered to remove any
spikes potentially present. Thez values (depth compo-
nents) are then interpolated and uniformly re-sampled. In
the last step, the depth data is smoothed with a mean fil-
ter. Automatic localization of the face is performed using
a simple clustering procedure, where all[x, y, z] vectors
are clustered into three distinct clusters and the largest is
retained as the facial area. Note that this procedure is far
from perfect; however, it is highly robust and has proven
”good“ enough for the proposed framework.

2.3 Data representation
Let I represent a preprocessed and localized face depth
image of sizew × h. A w × h× d dimensional compos-
ite representationF is then constructed from the depth
imageI (see Fig. 1) based on the following expression:

F (x, y) = φ(I, x, y), (1)

where the functionφ derives ad-dimensional vectorf =
F (x, y) from a pixel at position(x, y) of I. The vector
f can be derived by concatenating different representa-
tions of the imageI at (x, y). These representations in-
clude depth values, color information, pixel coordinates,
values of image gradients, higher order derivatives, filter
responses, differential-geometry descriptors, surface nor-
mals, etc. In other words, the composite representation
F represents aw× h× d tensor, withw andh represent-
ing its spatial coordinates andd denoting the number of
representations combined in the tensor (see Fig. 1).

2.4 Region Covariance Matrix
Once the composite representationF is constructed from
the given 3D face image, RCM descriptors can be com-
puted from it and used to derive feature vectors for the
modeling technique. Formally, any rectangular region

R ⊂ F , comprising a set of vectors{f}k=1...n, can
be represented by ad × d covariance matrix [4]:CR =
1

n−1

∑n
k=1(fk − µr)(fk − µr)

T , whereµr is the mean
vector of{f}k=1...n. The diagonal entries ofCR repre-
sent the variance of each feature and the non-diagonal
entries represent their respective correlations. Extract-
ing the covariance of an inhomogeneous area results in a
strictly symmetric and positive semi-definite matrix with
constant dimension that models the properties of the spec-
ified region. If no location-related representations, such
as spatial coordinates and alike, are used for the construc-
tion of the composite representation then the RCM de-
scriptor is both rotation as well as scale invariant.

2.5 The Unscented Transform
Covariance matrices do not lie on Euclidean space (e.g.
the space is not closed under multiplication with negative
scalars). Since we plan to use the computed RCM de-
scriptors as input for our GMM modeling procedure, we
exploit the Unscented Transform (UT) [3] to approximate
the RCM descriptors in Euclidian space. The transform
is capable of generating a specific set of vectorswi (for
i = 0, 1, ..., 2d+ 1) from each region covariance matrix
CR with the distribution of the set of vectors approxi-
mating the distribution characterized byCR. However,
unlikeCR, the vectorswi reside in Euclidean space. The
UT is similar to Monte Carlo methods with the difference
that the vectors are not generated randomly.

Given the region covariance matrixCR and assuming
an underlying Gaussian distributionp(µ,CR), the un-
scented transform generates a set of2d + 1 vectorswi

as follows: w0 = µ,, wi = µ + (
√
αCR)i, wi+d =

µ − (
√
αCR)i, wherei = 1 . . . d and(

√
αCR)i defines

thei-th column of the square root ofCR. The scalarα is
a weight for the elements in the covariance matrix and is
set toα = 2 in the case of the Gaussian distribution.

Each of the(2d+1) vectorswi resides in ad-dimen-
sional Euclidean space, whereL2 distance computations
can be applied. To obtain a single feature vector from
each RCM, we concatenate all feature vectors extracted
from a given RCM into one1 × d(2d + 1)-dimensional
feature vectors′ = [wT

0 w
T
1 ...w

T
2d+1]

T that is first pro-
jected into a PCA (principal component analysis) sub-
space and finally used as input to the modeling procedure:
fPCA : s′ ∈ R

d(2d+1) 7→ s ∈ R
d′

; d′ ≪ d(2d+ 1).



2.6 Modeling and Classification
In the last procedural step of our system, we model the
distribution of the local feature vectors, extracted from
the 3D face images by means of RCM descriptors, the
unscented transform and PCA using GMMs. Formally, a
GMM λ = {πk,µk,Σk}Kk=1 is defined as a linear com-
bination ofK multivariate Gaussian probability density
functions (PDFs)

p(s|λ) =
K∑

k=1

πkp(s|µk,Σk), (2)

where{πk}Kk=1 denote the weights of the mixture model,
{µk}Kk=1 denote the mean vectors and{Σk}Kk=1 repre-
sent diagonal covariance matrices of the GMM.

Given a set of local feature vectorsΨ = {sn}Nn=1, a
GMM is constructed by determining its parameters based
on maximization of the log-likelihood:log p(Ψ|λ) =∑N

n=1 log
∑K

k=1 πkp(sn|µk,Σk). Maximum likelihood
(ML) solutions for the model parameters are found via the
Expectation-Maximization (EM) algorithm in our case
initialized with theK-means clustering algorithm.

When building subject-specific GMMs1, there is usu-
ally not enough data available to estimate the parame-
ters of the GMM reliably. Therefore, a universal back-
ground model (UBM) is typically constructed first and
then adapted with subject-specific data. A UBM is itself
a GMM representing generic, person independent feature
characteristics. The parameters of the UBM are estimated
via the ML paradigm on all available training data. Once
the UBM is build, subject-specific GMM are computed
via maximum a posteriori (MAP) adaptation [5], where
only the mean vectors{µk}Kk=1 are adapted, by iterative
evaluation of

µ̂k = (1− α)µk + αµEM
k . (3)

The mean vectors from the constructed GMM are stacked
one after the other to form the so-calledsuper-vectorof
the given 3D face image.

Once the super-vector is derived from the input 3D
face image of a given subject, it can be used to train
a classifier for this specific subject. During the enroll-
ment phase, when the subject is first presented to the
system, a SVM [6] classifier is trained for that subject
and a decision hyperplane between the super-vector of
the “enrollee” and the super-vectors from a set of de-
velopment images is constructed. In the test phase, the
claimant is accepted or rejected based on the distance of
the claimant’s super-vector to the decision hyperplane.
Note that within-class covariance normalization (WCCN)
as well as rank normalization of the data are used prior to
SVM training and classification.

2.7 Characteristics of the Proposed Approach
The framework introduced in the previous sections ex-
hibits some highly useful characteristics due to the use
of RCM descriptors and GMMs:i) data fusion: RCM

1A subject-specific GMM in this context is a GMM constructed
from one 3D face image of a specific subject.

descriptors are capable of combining various 3D repre-
sentations into a single coherent descriptor and can, thus,
be treated as an efficient data fusion scheme;ii) invari-
ance:RCM descriptors do not encode information relat-
ing to the ordering or number of feature vectors in the
region from which they were computed and are, hence,
scale and rotation invariant to some extent;iii) computa-
tion: since RCM descriptors are computable regardless
of the number of feature vectors used for their compu-
tation, they can easily handle missing data (i.e., holes in
the face scans or regions on the borders of the face scans)
in the feature extraction step;iv) local vs. global rep-
resentation:the size of the RCM-derived feature vectors
does not depend on the size of the region from which they
were extracted; feature vectors of equal dimensions can,
therefore, be computed from variable sized image blocks;
v) robustness:GMM-based systems treat data (i.e., fea-
ture vectors) as independent and identically distributed
(i.i.d.) observations and, hence, present 3D facial images
in the form of a number of orderless blocks; this charac-
teristic is reflected in good robustness to imperfect face
alignment, pose changes, occlusions and expression vari-
ations; andvi) missing data:GMM makes it easy to han-
dle missing/unreliable data during the modeling step and
allow for the inclusion of domain-specific prior knowl-
edge into the modeling procedure.

3 Experiments and results

For the experiments presented in remainder two databases
were adopted - the FRGCv2 and UMB databases [7], [8].

The images in the FRGCv2 database exhibit minor
pose variations and major expression variations. FRGCv2
includes 4007 3D face images of 466 subjects. The data-
base is used in the experimental configuration usually re-
ferred to as theall vs. all configuration. Here, more than
16 million verification attempts are conducted and conse-
quently used to generate performance metrics. The sec-
ond database used in the experiments, the UMB database,
is composed of 1473 images (3D + color 2D) of 143 sub-
jects. This database was acquired with a particular focus
on facial occlusions that can occur in real-world scenar-
ios. There are 590 images with facial areas occluded by
different objects, such as hair, eyeglasses, hands, hats,
scarves, etc. Occlusions cover, on average, 42% of the
face area, with a maximum of about 84%. For the UMB
database, all face scans marked as occluded were matched
against all face scans marked as neutral and non-occluded.
Hence, this database was used to assess the robustness of
the proposed framework. Note that ZT-score normaliza-
tion was used as a standard procedure for all techniques
when generating the results.

The first crucial step of the proposed framework is
the construction of the composite representationF to be
used in all further processing steps. To select appropri-
ate representations for this purpose, the first experiments
evaluate different possibilities, such as pixel coordinates
(x, y), depth valuesI, shape index valuesIs, Gaussian
curvature valuesIg, mean curvature valuesIm, mini-
mum curvature valuesImin, maximum curvature values



Table 1: Verification rate (%) at a 0.1% FAR for differentF

Composite representationF FRGCv2 UMB

[Inx Iny Inz ] 94.8 81.2

[X Y Inx Iny Inz ] 95.8 83.5

[Is Inx Iny Inz ] 95.7 84.7
[X Y Is Inx Iny Inz ] 94.7 83.9

[Ilbp Is Inx Iny Inz ] 93.6 82.0

[Is Ig Im Imin Imax] 92.3 82.3

[X Y Is Iϕ Ilbp] 78.3 65.6

Table 2: Comparative results

FRGCv2 (VR@01FAR in %) UMB (ROR in %)

Drira et al. [9] 94.0 Colomboet al. [8] 56.6

Inanet al. [10] 98.4 Alyuz et al. [11] 74.6

Queiroloet al. [12] 96.5 Proposed 91.8

Proposed 97.7

Imax, surface normal coordinatesInx, Iny andInz, lo-
cal binary patternsIlbp and angle valuesIϕ between sur-
face normals and the average facial normal. As can be
seen from Table 1, where the results of the experiments
are presented in the form of verification rates at the false
acceptance rate of0.1% (VR@01FAR), the best perfor-
mance is achieved with the following composite repre-
sentation:F = [Is Inx Iny Inz ]. This result is particu-
larly interesting as the best performance is not a result of
using the composite representation with the largest num-
ber of individual representation combined. This indicates
that special attention should be given to the selection of
appropriate representations.

After optimizing other hyper-parameters of the recog-
nition framework, such as, feature space dimensionality,
number of gaussian mixtures, SVM kernel parameters,
and alike, it is possible to further improve on the verifi-
cation rates presented in Table 1. With optimized param-
eters the proposed framework becomes highly competi-
tive even when compared to state-of-the-art results from
the literature as shown in Table 2. Note that the frame-
work achieves comparable performance to state-of-the-
art techniques from the literature on the FRGCv2 database,
while it significantly outperforms the existing state-of-
the-art on the UMB database that contains occluded fa-
cial scans (the results for the UMB are presented in term
of the rank one recognition rate - ROR).

The robustness of the framework can, of course, be
attributed to the use of RCM descriptors and face repre-
sentations based on differential geometry, which ensure
robustness to pose and expression variations. However,
the most important part when it comes to robustness to
facial occlusions is the modeling procedure. Here, the
UBM and the MAP adaptation procedure make it possi-
ble to cope with unreliable local features and still con-
struct reliable subject-specific GMMs. To better demon-
strate this fact the GMMs are used as generative models.
By sampling from the constructed GMMs, it is possible
to generate synthetic data in the feature space and subse-
quently generate face images. Some of these images are
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Figure 2: Pre-processed images (top row) and images generated
from corresponding GMMs by random sampling(bottom row).

shown in Fig. 2. Here, the upper row shows automatically
localized faces from the UMB database, while the lower
row shows synthetic images generated from the corre-
sponding GMMs. Note how due to the UBM the subject-
specific GMMs encode frontal (rotation-corrected), seg-
mented and un-occluded information about the given sub-
jects and carry similar information for the same identities.

4 Conclusion

The paper introduced a novel framework for 3D face recog-
nition, assessed it on two challenging databases and demon-
strated its merits over other techniques from the literature.
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