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Abstract discriminative manner and form the foundation for our
The paper presents a novel framework to 3D face recogrodeling procedure. As the matrices reside in Rieman-
nition that exploits region covariance matrices (RCMs)nian and not Euclidean space they cannot be subjected
Gaussian mixture models (GMMs) and support vectadirectly to the GMM construction step. To overcome this
machine (SVM) classifiers. The proposed framework firidsue, we employ the unscented transform [3] and pro-
combines several 3D face representations at the featudzice a number of feature vectors from each of the region
level using RCM descriptors and then derives low-dimenssvariance matrices and finally use these vectors as input
ional feature vectors from the computed descriptors witto our modeling stage. Once the GMM model is com-
the unscented transform. By doing so, it enables compputed from the inputimage a SVM classification scheme
tations in Euclidean space, and makes Gaussian mixtuig used to make a decision regarding the identity of the 3D
modeling feasible. Finally, a support vector classifier iface image originally presented to the recognition frame-
used for identity inference. As demonstrated by our exvork. The proposed framework has a number of desir-
perimental results on the FRGCv2 and UMB databasegble characteristics, such as an inherent mechanism for
the proposed framework is highly robust and exhibits dedata fusion (through the region covariance matrices), the
sirable characteristics such as an inherent mechanism fahility to examine the facial images at different levels of
data fusion (through the RCMs), the ability to examine lolocality, to handle missing data, etc.
cal as well as global structures of the face with the same The rest of the paper is structured as follows: in Sec-
descriptor, the ability to integrate domain-specific priortion 2 we introduce the proposed framework and describe
knowledge into the modeling procedure and consequenty of its parts and characteristics. In Section 3 we present
to handle missing or unreliable data. some experiment and highlight the merits of the proposed

methodology. We conclude the paper in Section 4.

1 Introduction

Personal recognition based on 3D facial images is bez— Proposed methodology

coming increasingly popular mainly due to its potentiap.1 Overview

market value and its desirable characteristics, such as iprg_ 1 depicts a simplified block diagram of the proposed
herent robustness to illumination or pose changes. Ne¥p face recognition framework. The first procedural step
ertheless, there are still a number of open issues, as eg¥-the framework is the acquisition of the 3D face im-
phasized by various surveys, e.g., [1], pertaining mainlyge The data acquisition step is followed by a registra-
to recognition in the presence of varying facial expresgon and preprocessing procedure, where the facial region
sions, partial occlusions of the facial area and the overgll cropped from the 3D scan and any holes and spikes po-
reliability of the recognition procedure. o tentially present are removed. In the next step, the pre-
In this paper we build upon the framework originally b ocessed 3D facial data is mapped into a data structure
introduced in [2] and present an updated framework fofyat we will refer to as @omposite representatian the
3D face recognition, which again capitalizes on regioRemainder of the paper. The composite representation is
covariances and Gaussian mixture models (GMMs), bien processed on a block-by-block basis and region co-
adds several new steps to the processing chain. Withjgjance matrices (RCM) are extracted from each exam-
the proposed framework a 3D face image is first reprépeq plock. Note that different from most other feature
sented by a number of region covariance matrices comgxraction techniques, RCM descriptors can be extracted
puted from regions of different sizes. These matrices efrom regions of variable sizes, thus, allowing to extract
sure that the 3D face images are described in a highljscriminative information from the data at local as well
This work has been supported in parts by the national résemee &S global levels. Furthermore, the descriptors provide an
gram P2-0250(C) Metrology and Biometric Systems, the mmitial ~ elegant way of combining different representations of 3D

project BAMBI (ARRS ID Z2-4214), and European Union’s Seten ; eature vector. After the RCM ex-
Framework Programme (FP7-SEC-2011.20.6) under grantiagmet data into a coherent f )

number 285582 (RESPECT). The authors additionally apgiedhe traction procet_dure each face IS r_eprgsented by a number
support of COST Actions IC 1106 and 1C1206. of RCM descriptors, whose distribution can be modeled
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Figure 1: Conceptual diagram of the proposed framework

by a GMM. Here, GMMs are selected for modeling pur-R C F, comprising a set of vector§f}i—1.. ., can
poses, since they allow to incorporate prior knowledgbe represented by@x d covariance matrix [4]Cr =

into the modeling procedure and are easily adopted trgﬁ—l vy (F& — o) (fx — )T, wherep, is the mean
handle unreliable or missing (i.e., occluded) data. Finall vector of { f }.—1..»,. The diagonal entries af'; repre-

a SVM-based classification scheme is employed to clasent the variance of each feature and the non-diagonal
sify the super-vectors derived from the GMMSs. In theentries represent their respective correlations. Extract

remainder we elaborate on all presented steps. ing the covariance of an inhomogeneous area results in a
) strictly symmetric and positive semi-definite matrix with
2.2 Data preprocessing constant dimension that models the properties of the spec-

Raw 3D face images, which represent the input to oufied region. If no location-related representations, such
framework, are initially low-pass filtered to remove anyas spatial coordinates and alike, are used for the construc-
spikes potentially present. Thevalues (depth compo- tion of the composite representation then the RCM de-
nents) are then interpolated and uniformly re-sampled. lscriptor is both rotation as well as scale invariant.

the last step, the depth data is smoothed with a mean fil-

ter. Automatic localization of the face is performed using?-> The Unscented Transform

a simple clustering procedure, where [ally, z] vectors Covariance matrices do not lie on Euclidean space (e.qg.
are clustered into three distinct clusters and the largestthe space is not closed under multiplication with negative
retained as the facial area. Note that this procedure is facalars). Since we plan to use the computed RCM de-
from perfect; however, it is highly robust and has provecriptors as input for our GMM modeling procedure, we

"good" enough for the proposed framework. exploit the Unscented Transform (UT) [3] to approximate
. the RCM descriptors in Euclidian space. The transform
2.3 Data representation is capable of generating a specific set of vectorgfor

Let I represent a preprocessed and localized face depthk= 0,1, ..., 2d + 1) from each region covariance matrix
image of sizav x h. A w x h x d dimensional compos- Cp with the distribution of the set of vectors approxi-
ite representatiod” is then constructed from the depthmating the distribution characterized I6yz. However,
imagel (see Fig. 1) based on the following expression: unlike Cr, the vectoraw; reside in Euclidean space. The
Fa,y) = 6(1,2,y) (1) UT is similar to Monte Carlo methods with the difference
’ VI that the vectors are not generated randomly.
where the functio derives al-dimensional vectof = Given the region covariance matXz and assuming
F(z,y) from a pixel at position(z, y) of I. The vector an underlying Gaussian distributigriis, Cr), the un-
f can be derived by concatenating different representgcented transform generates a se@f+ 1 vectorsw;
tions of the imagd at (z,y). These representations in-as follows: wy = p,, w; = p + (VaCg)i, wita =
clude depth values, color information, pixel coordinategt — (vVaCRr)i, wherei = 1...d and(v/aCr); defines
values of image gradients, higher order derivatives, filtehei-th column of the square root 6fz. The scalar is
responses, differential-geometry descriptors, surface n @ weight for the elements in the covariance matrix and is
mals, etc. In other words, the composite representati@gt toa = 2 in the case of the Gaussian distribution.
F represents & x h x d tensor, withw andh represent- Each of the(2d + 1) vectorsw; resides in al-dimen-
ing its spatial coordinates antidenoting the number of sional Euclidean space, wheké distance computations

representations combined in the tensor (see Fig. 1). ~ can be applied. To obtain a single feature vector from
each RCM, we concatenate all feature vectors extracted

2.4 Region Covariance Matrix from a given RCM into ond x d(2d + 1)-dimensional

Once the composite representatiBiis constructed from feature vectos’ = [wl w{ ..w],, ] that is first pro-

the given 3D face image, RCM descriptors can be conjected into a PCA (principal component analysis) sub-

puted from it and used to derive feature vectors for thepace and finally used as input to the modeling procedure:

modeling technique. Formally, any rectangular regiorfpca : 8' € R¥ 2D s s € RY; d' < d(2d + 1).



2.6 Modeling and Classification descriptors are capable of combining various 3D repre-
In the last procedural step of our system, we model thgentations into a single coherent descriptor and can, thus,
distribution of the local feature vectors, extracted fronbe treated as an efficient data fusion scheienvari-

the 3D face images by means of RCM descriptors, th@hce:RCM descriptors do not encode information relat-
unscented transform and PCA using GMMs. Formally, §19 to the ordering or number of feature vectors in the
GMM \ = {my, ui, B} is defined as a linear com- region from which they were computed and are, hence,
bination of K’ multivariate Gaussian probability density Scale and rotation invariant to some exteifitcomputa-

functions (PDFs) tion: since RCM descriptors are computable regardless
K of the number of feature vectors used for their compu-
p(s|A) = Z?Tkp(SIMk =) ) tation, they can easily handle missing data (i.e., holes in

the face scans or regions on the borders of the face scans)
in the feature extraction stefy) local vs. global rep-
resentation:the size of the RCM-derived feature vectors
; : ) does not depend on the size of the region from which they
sengij\lzgo;2L$%¥?£|§1;i22:::2%isc$éhs ({BMM;V q |ere extracted; feature vectors of equal dimensions can,
GMM is constructed by determining its p?ar;r?lertlgrls, baset(l_%erefore, be computed from variable sized image blocks;
RS N ) V) robustnessGMM-based systems treat data (i.e., fea-
on maximization of the log-likelihoodlog p(¥|\) = ¢ . . ; Co
N K , N ure vectors) as independent and identically distributed
2 n=1108 > 1 Tkp(8n|pk, By). Maximum likelihood (i 4 y observations and, hence, present 3D facial images
(ML) solutions for the model parameters are found viathg, yhe form of a number of orderless blocks; this charac-
Expectation-Maximization (EM) algorithm in our casegyigsic js reflected in good robustness to imperfect face
initialized with theX’-means clustering algorithm. alignment, pose changes, occlusions and expression vari-
When building subject-specific GMMsthere is usu- i and/i) missing dataGMM makes it easy to han-

ally not enough data available to estimate the param@yg missing/unreliable data during the modeling step and
ters of the GMM reliably. Therefore, a universal back-

X . ) allow for the inclusion of domain-specific prior knowl-
ground model (_UBM) is typlcal_ly constructed f|r_st _a”dedge into the modeling procedure.
then adapted with subject-specific data. A UBM is itself
a GMM representing generic, person independent featuge Experiments and results
characteristics. The parameters of the UBM are estimated
via the ML paradigm on all available training data. Oncd-or the experiments presented in remainder two databases
the UBM is build, subject-specific GMM are computedwere adopted - the FRGCv2 and UMB databases [7], [8].
via maximum a posteriori (MAP) adaptation [5], where ~ The images in the FRGCv2 database exhibit minor

only the mean vectoruy, } 2, are adapted, by iterative Pose variations and major expression variations. FRGCv2
evaluation of includes 4007 3D face images of 466 subjects. The data-

base is used in the experimental configuration usually re-
f = (1= a)pr + opp M. (3) ferred to as thall vs. all configuration. Here, more than
16 million verification attempts are conducted and conse-
The mean vectors from the constructed GMM are stackegliently used to generate performance metrics. The sec-
one after the other to form the so-calledper-vectoof  ond database used in the experiments, the UMB database,
the given 3D face image. is composed of 1473 images (3D + color 2D) of 143 sub-
Once the super-vector is derived from the input 3Qects. This database was acquired with a particular focus
face image of a given subject, it can be used to traifn facial occlusions that can occur in real-world scenar-
a classifier for this specific subject. During the enrollips. There are 590 images with facial areas occluded by
ment phase, when the subject is first presented to thfferent objects, such as hair, eyeglasses, hands, hats,
system, a SVM [6] classifier is trained for that subjectcarves, etc. Occlusions cover, on average, 42% of the
and a decision hyperplane between the super-vector gfce area, with a maximum of about 84%. For the UMB
the “enrollee” and the super-vectors from a set of degatabase, all face scans marked as occluded were matched
velopment images is constructed. In the test phase, thgainst all face scans marked as neutral and non-occluded.
claimant is accepted or rejected based on the distance@énce, this database was used to assess the robustness of
the claimant's super-vector to the decision hyperplanghe proposed framework. Note that ZT-score normaliza-
Note that within-class covariance normalization (WCCNhon was used as a standard procedure for all techniques
as well as rank normalization of the data are used prior {ghen generating the resullts.
SVM training and classification. The first crucial step of the proposed framework is
- the construction of the composite representafibto be
2.7 Characteristics of the Proposed Approach used in all further processir?g steps.IO To select appropri-
The framework introduced in the previous sections exate representations for this purpose, the first experiments
hibits some highly useful characteristics due to the usyajuate different possibilities, such as pixel coordisat
of RCM descriptors and GMMsi) data fusion: RCM (z,y), depth valued, shape index valuek,, Gaussian
1A subject-specific GMM in this context is a GMM constructed CUrvature valued,;, mean curvature valuek,,, mini-
from one 3D face image of a specific subject. mum curvature values,,;,,, maximum curvature values

k=1
where{r; } £ | denote the weights of the mixture model,
{ui | denote the mean vectors afifL; } & | repre-




Table 1: Verification rate (%) at a 0.1% FAR for differefit

Composite representatiadi ~ FRGCv2 UMB

(Inz Iny In:] 94.8 81.2
(XY Ing Iny In:) 95.8 83.5
[Is Iz Iny Ins) 95.7 84.7
(XY I Ing Iny In:) 94.7 83.9
(Libp Is Ing Iny In:] 93.6 82.0
[Is I Im Tonin Imas) 92.3 82.3 '
(XY I, I, Iy 78.3 65.6 Figure 2: Pre-prqcessed images (top row) anql images gederat
from corresponding GMMs by random sampling(bottom row).
Table 2: Comparative results shown in Fig. 2. Here, the upper row shows automatically
FRGCv2 (VR@OLFAR in %) UMB (ROR in %) localized faces from the UMB database, while the lower
row shows synthetic images generated from the corre-
Driraet al. [9] 94.0 | Colomboetal.[8] ~ 56.6 sponding GMMs. Note how due to the UBM the subject-
Inanet al. [10] 98.4 | Alyuzetal.[11] ~ 74.6 specific GMMs encode frontal (rotation-corrected), seg-
Queiroloetal.[12] 965 | Proposed 918 mented and un-occluded information about the given sub-
Proposed 97.7

jects and carry similar information for the same identities

I, surface normal coordinatds, I, andI,., lo- .
cal binary patterng;;, and angle value, between sur- 4 Conclusion

face normals and the average facial normal. As can bge paperintroduced a novel framework for 3D face recog-
seen from Table 1, where the results of the experimenggion, assessed it on two challenging databases and demon-

are presented in the form of verification rates at the falsgrated its merits over other techniques from the litegatur
acceptance rate ®1% (VR@O01FAR), the best perfor-

mance is achieved with the following composite repreReferences
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