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Abstract: Similarity scores represent the basis for identity inference in biometric verification systems. However, because of the
so-called miss-matched conditions across enrollment and probe samples and identity-dependent factors these scores typically
exhibit statistical variations that affect the verification performance of biometric systems. To mitigate these variations, score-
normalisation techniques, such as the z-norm, the t-norm or the zt-norm, are commonly adopted. In this study, the authors
study the problem of score normalisation in the scope of biometric verification and introduce a new class of non-parametric
normalisation techniques, which make no assumptions regarding the shape of the distribution from which the scores are
drawn (as the parametric techniques do). Instead, they estimate the shape of the score distribution and use the estimate to map
the initial distribution to a common (predefined) distribution. Based on the new class of normalisation techniques they also
develop a hybrid normalisation scheme that combines non-parametric and parametric techniques into hybrid two-step
procedures. They evaluate the performance of the non-parametric and hybrid techniques in face-verification experiments on
the FRGCv2 and SCFace databases and show that the non-parametric techniques outperform their parametric counterparts
and that the hybrid procedure is not only feasible, but also retains some desirable characteristics from both the non-parametric
and the parametric techniques.
1 Introduction

Biometric verification systems typically rely on a matching
module to measure the similarity (or dissimilarity) between
the feature representation extracted from the ‘live’ biometric
sample (the probe sample) and the template of a given
identity stored in the systems database. Here, the template can
be a feature representation, a classifier with a corresponding
discriminant function or some other type of mathematical
model that can be probed for its similarity with the input
biometric sample. The output of the matching module is a
matching (similarity/dissimilarity) score, which is compared
to a decision threshold to make a decision regarding the
identity of the ‘live’ biometric sample. However, because of
changes in the conditions across different enrollment and
probe samples, similarity scores typically exhibit statistical
variations [1], which negatively affect the recognition
performance and render approaches relying on a single,
global decision threshold as suboptimal. These statistical
variations are as well as being dependent on varying external
conditions often also identity dependent, which is known in
the literature as the Dodington Zoo effect [2].
To mitigate the problem of score variation the computed

matching score is commonly subjected to a score-
normalisation technique, which in a sense calibrates the score
and makes it comparable to a global decision threshold. In the
context of biometric verification, (‘parametric’) normalisation
techniques, which assume that the matching score is drawn
from a Gaussian-shaped distribution and that adjusting this
distribution to zero mean and unit variance successfully
alleviates the score-variation problem, have emerged as the
most popular. Since different strategies can be adopted to
produce the required estimates of the first and second
statistical moment of the Gaussian distribution, different
normalisation techniques have been proposed by different
researchers (e.g. [3–6]).
In this paper, we build on our work from [7, 8] and

introduce a new class of score-normalisation techniques,
which make no assumption regarding the shape of the
distribution from which the matching scores are drawn. We
present a simple procedure based on the rank transform for
mapping the initial score distribution to a common
(predefined) one. Although the basic idea of adjusting the
score distribution to a common one is still the same as in
the case of parametric techniques, this class of so-called
‘non-parametric’ score-normalisation techniques relaxes the
assumptions pertaining to the shape of the score distribution
and is, therefore expected to have an advantage when it
comes to the verification performance after normalisation.
Note that a parametric technique exploiting a similar idea
was already proposed in [9], where it was shown explicitly
that relaxing the Gaussian assumption is indeed beneficial
for the recognition performance.
Although the assumption-free nature of the non-parametric

normalisation techniques is expected to positively affect the
verification performance of a given biometric system, it
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comes at a price. As will be elaborated in the remainder of the
paper, non-parametric techniques require a much higher
number of score samples than their parametric counterparts
for the normaliaation procedure and this then results in a
significantly higher computational complexity. The reason
for this setting is the fact that non-parametric normalisation
techniques operate on the entire score distribution, which
needs to be estimated reliably, while the parametric
techniques rely only on the estimation of two parameters.
These issues may limit the deployment of non-parametric
normalisation techniques in verification systems in which
the operational speed is crucial.
We will show that for certain types of score-normalisation

techniques it is possible to retain the performance gains
because of the non-parametric normalisation, while
preserving the (run-time) computational complexity of the
parametric normalisation techniques. This, however, applies
only to score-normalisation techniques that combine two
normalisation techniques into a single two-step procedure.
An example of such a two-step normalisation technique can
be found in the popular zt-norm, which combines the
so-called z- and t-norms [Details on the t-, z- and zt-norms
are given in the remainder.] [3, 10, 11]. The zt-norm
is considered to be amongst the most effective score-
normalisation techniques and is regularly used in the fields
of speaker- and signature-verification [3, 4]. Instead of
performing the zt-norm in either a pure parametric or a pure
non-parametric manner, in this paper, we propose to use a
‘hybrid’ technique, where the z-norm step, which can be
conducted off-line, is performed non-parametrically, and the
t-norm step is performed parametrically.
Our experimental assessments, conducted on the Face

Recognition Grand Challenge (FRGC) and SCFace
databases, show that the non-parametric score-normalisation
techniques indeed ensure a better verification performance
than their parametric equivalents and that the proposed
hybrid normalisation scheme still outperforms its parametric
counterpart, while exhibiting the same computational
complexity.
The rest of the paper is structured as follows. In Section 2,

we first describe the theoretical background required for
understanding the problem of score normalisation and
review the existing work done in this field. In Section 3, we
introduce the new class of non-parametric and hybrid
score-normalisation techniques and elaborate on their
characteristics in Section 4. We present experiments on the
FRGCv2 and SCFace databases in Section 5 and conclude
the paper with some final comments and directions for
future work in Section 6.

2 Theoretical background

2.1 Problem formulation

Score normalisation represents a problem that arises in the
context of biometric verification [Score normalisation is
important in other areas (e.g. classifier fusion [12, 13]) as
well, but in this paper, we focuson the problem of biometric
verification.]. Before approaching score normalisation, it is,
therefore necessary to define the problem of biometric
verification in a more formal manner.
Let us assume that there are N identities enroled in the

given biometric system and that these identities are labelled
with C1, C2, ..., CN. Furthermore, let us assume that we are
given an input feature vector x and a claimed identity Ci

from the pool of the N enrolled identities. The goal of
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biometric verification is to assign the pair (Ci, x) to class w1

(a genuine/client claim) if the claim of identity is accepted,
and to class w2 (a false/impostor claim) otherwise.
Typically, the acceptance of the claim is determined based
on the return value [The matching or similarity scores] of
the scoring function s = δi(x) associated with the identity Ci

[14, 15], that is,

(Ci, x) = w1, if di(x) ≤ D for i [ {1, 2, . . . , N}
w2, otherwise

{

(1)

where Δ stands for the so-called decision threshold [Here, we
assume that the scoring function δi(.) returns small values for
large similarities and large values for small similarities.].
There are usually at least two possibilities for how to

compute the matching score for a given probe vector x and
a claimed identity Ci, which depend on the way the
identities are modelled in the biometric system. In the case,
the identities are modelled using a classifier, the matching
score is produced based on a discriminant function
associated with the classifier, where the return value of the
discriminant function serves as an indicator of class-
membership. When the identities are not represented with a
classifier, but with some other type of template, the
matching score is typically generated by measuring the
similarity of the probe feature vector and the enrolled
template using some similarity measure. In the remainder
of the paper, we will refer to any function returning
a matching score, albeit a discriminant function or a
similarity measure, as a ‘scoring function’.
From a generative point of view, verification can be seen as

a two-class generating process, w1 and w2, that generate
observations s according to the probability density functions
(PDFs) p(s|w1) and p(s|w2) [16]. Based on this formulation
and a specific value for the decision threshold Δ, it is
possible to define the total Bayes’ error of the verification
process as

ER =
∫D
−1

p(s|w2)p(w2) ds+
∫1
D

p(s|w1)p(w1) ds (2)

where p(w2) and p(w1) represent the prior probabilities of the
two classes, w2 and w1, respectively.
To illustrate the importance of score normalisation let us

have a look at the simple toy example presented in Fig. 1.
Here, the classes w1 and w2 rely on two base classifiers
(identities) C1 and C2 to generate the scores s [5, 17]. The
green plot represents the client-score distribution p(s|w1),
the black plot represents the impostor-score distribution
p(s|w2), the dotted red and blue plots represent the
identity-specific client-score distributions p(s|w1, C1) and
p(s|w1, C2), and the dotted magenta and cyan plots
represent the identity-specific impostor-score distributions
p(s|w2, C1) and p(s|w2, C2), respectively. In this example,
the identity-specific class-conditional distributions form the
basis for computing the impostor- and client-score
distributions (i.e. the green plot represents a weighted sum
of the red and blue plots and the black plot represents a
weighted sum of the cyan and magenta plots). Assume for
the moment that the criterion for determining the decision
threshold was an equal contribution of both terms of (2) to
the Bayes’ error. As we can see from Fig. 1, this criterion
results in the threshold value of Δ if only the
class-conditional distributions p(s|w1) and p(s|w2) are
63
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Fig. 1 Illustration of the role of score normalisation

The plots in the upper figure show the impostor and client-score distributions, while the plots in the lower figure show identity-specific impostor and client-score
distributions. The distributions in the upper figure were created based on the distributions in the lower figure (best viewed in colour). For all plots equal priors are
assumed. It should be noted that the decision thresholds for the EERs are set in a such a way that the cumulative density functions of the presented densities take
the same value, for example, A1 = A2
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considered. However, if the identity-specific information is
considered as well, the decision threshold for the identities
C1 and C2 has to be set adaptively at Δ′ and Δ′′, respectively,
to ensure the optimal operation of the system with respect to
the selected criterion (assuming equal priors for the two
classes) [18–20]. Another possibility is to apply
score-normalisation techniques to the computed scores s with
the goal of aligning the identity-specific class-conditional
[Here, the term ‘class’ refers to either the impostor or the
client class.] score distributions p(s|w1, Ci) and/or p(s|w2, Ci),
for i∈ {1, 2, …, N} and making the scores comparable to a
single global decision threshold [3, 5, 10]. Note that the
presented example applies only to target-centric
score-normalisation techniques (such as the z-norm).
However, a similar example could also be presented for the
probe-centric techniques (such as the t-norm).
2.2 Score normalisation – background and related
work

Score-normalisation techniques can be divided into two groups
based on the nature of the scores that are used for the
normalisation. If the scores used by the normalisation
technique are generated based on client-verification attempts,
then the technique is said to be ‘client-centric’ and, similarly,
if the scores used by the normalisation technique are
generated based on impostor-verification attempts, then the
normalisation technique is said to be ‘impostor-centric’. As
the data for producing client scores is usually not available
(or extremely scarce), most of the existing techniques fall
into the latter group, even though attempts have been made
to develop client-centric score-normalisation techniques as
well [20].
Among the group of impostor-centric score-normalisation

techniques, the zero-normalisation or z-norm, the ‘test-
normalisation’ or t-norm [3] and combinations of the two
64
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(zt-norm) are among the most popular. Promising efforts
on incorporating client scores into impostor-centric
normalisation techniques (i.e. efforts towards ‘client-
impostor-centric’ methods) have also been proposed in the
literature in the form of the F-norm [11], the EER-norm [4],
the MS-LLR-norm [5] and other recently proposed
techniques, e.g. [21, 22].
Formally, score-normalisation techniques try to define a

mapping c [5]

c: s � s′ (3)

in such a way that the resulting normalised scores s′ are well
calibrated and, thus, comparable to a single global decision
threshold. In the above equation, s denotes a raw score
representing the output of the matching module of a
biometric verification system and s′ stands for the normalised
version of the score. The total Bayes’ error of the verification
process after normalisation can then be written as

ER′ =
∫Dc

−1
p(s′|w2)p(w1) ds

′ +
∫1
Dc

p(s′|w1)p(w1) ds
′ (4)

where Δc again defines a decision threshold determined based
on the selected performance criterion. Obviously, the goal of
the score normalisation is to ensure that ER′ < ER.
Impostor-centric score-normalisation techniques typically

define the mapping c based on the impostor-score
distributions p(s|w2) [7, 8]. The most popular techniques
from this group are presented in the next section.

2.3 Parametric solutions

Parametric score-normalisation techniques commonly assume
a certain shape for the class-conditional score-distributions
and then apply normalisation steps in accordance with the
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assumptions made. The most popular impostor-centric
score-normalisation techniques, such as the z- or t-norm, for
example, assume that the impostor-score distribution p(s|w2)
(estimated based on the model of the claimed identity or the
given probe vector) takes a Gaussian form, that is,

p(s|w2) = N (s; m, s) (5)

where μ and σ denote the mean and standard deviation of the
impostor-score distribution. Score normalisation is then
conducted by shifting and scaling the assumed Gaussian
distribution to zero mean and unit variance

c(s) = s′ = s− m

s
(6)

As we can see, the goal of these techniques is to normalise
the impostor-score distributions for all the identities (in the
case of the z-norm) or for each probe vector x (in the case
of the t-norm) to N (s′; 0, 1) and to ensure that the scores
from all the verification attempts are drawn from the same
distribution. This in turn suggests that the scores are well
calibrated and can be compared to a single global threshold.
The z- and t-norm both use (6) to normalise the

impostor-score distributions to N (s′; 0, 1), with the
difference being that the z-norm generates the required
scores by subjecting a number of probe samples (or
z-impostors) to the scoring function δi(.) associated with the
target/claimed identity (i.e. Ci), while the t - norm generates
its scores by subjecting the given probe sample to a number
of scoring functions δj(.) (or t-models) corresponding to
some background identities C1t, C2t, …, Cjt, …, Cmt, where
m denotes the total number of said identities (t-models).
Based on the generated score sets each type of score
normalisation computes its μ and σ, respectively [7, 8].

3 Beyond parametric techniques

Parametric score-normalisation techniques operate by making
certain assumptions regarding the shape of the relevant score
distributions and by adjusting the parameters of the assumed
distributions to normalise the scores. In this section, we
introduce a new class of non-parametric normalisation
techniques that make no such assumptions and show how
they can be combined with parametric techniques into
hybrid normalisation approaches.

3.1 Non-parametric score normalisation

Conducting score normalisation in a non-parametric manner
pursues the same goal as conducting the normalisation
procedure in a parametric way, namely, making the
normalised scores comparable to a single, global decision
threshold. However, unlike parametric techniques, the
non-parametric approaches do not make any assumptions
regarding the shape of the impostor-score distribution p(s|w2).
To be able to relax the Gaussian assumption, the

non-parametric normalisation techniques need to estimate
the PDF of the impostor-score distribution p(s|w2), which
can be achieved by using kernel density estimation (KDE)
[23]. Once the PDF is estimated, the impostor-score
distribution can be normalized by mapping it to a
predefined shape. This procedure forms the basis for the
work presented in [7, 8], but requires an estimate of the
open hyper-parameters of the KDE and is computationally
relatively intense. In this paper we introduce a slightly
IET Biom., 2014, Vol. 3, Iss. 2, pp. 62–74
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different approach, which follows the same basic steps, but
relies on a rank transform, has no open hyper-parameters
and is computationally simpler.
Non-parametric score normalization can be formally

described as follows: let r be a random variable with the
property [8, 24]

r = F(s) =
∫s
q=−1

ps(q) dq (7)

where q is a dummy variable for the integration. Furthermore,
let s′ be another random variable with the property

r = G(s′) =
∫s′
x=−1

ps′ (x) dx (8)

where x again denotes a dummy variable for the integration. If
we assume that the PDF ps(q) represents our impostor-score
distribution p(s|w2) and that ps′(x) represents the PDF of a
predefined target distribution, then the class of non-
parametric score-normalisation techniques can be described
as follows

c(s) = G−1(r) = G−1(F(s)) = s′ (9)

where G(.) and F(.) denote the cumulative density functions
(CDF) of their corresponding arguments and G−1(.)
represents the inverse of the CDF [7]. Using the above
expressions, it is possible to implement most of the existing
parametric score-normalisation techniques in a non-
parametric fashion. This includes the popular z- and t-norms
[7, 8].
In practice, it is not necessary to estimate the PDF of (7)

explicitly using the KDE. Instead, the left-hand side of the
equation can be computed directly using the so-called rank
transform [25, 26]. With the rank transform, the score
samples that would otherwise serve to estimate the PDF of
(7) are first put in ascending order. Each score in the
ordered sequence is then assigned an index (or rank) that
represents the position of the score in the ordered sequence
[In other words, each score is assigned a number (i.e. the
rank) that counts the number of scores smaller than the
currently observed score in the available set of scores.].
Once the rank R of each score is determined, the left-hand
side of (7) can be computed as

r = F(s) = n− R+ 0.5

n
(10)

where n denotes the number of elements in the set of scores
and the rank R corresponds to the input score s. Note again
that with the presented procedure we use the available score
samples to estimate a CDF [i.e. F(s)] rather than a PDF.
From this point of view, the proposed technique could also
be interpreted so as to relate to the copula family of
algorithms from the field of multivariate statistics [27].
To illustrate the idea of non-parametric score normalisation

an example of an impostor-score distribution was generated
through preliminary experimentation on the FRGCv2
database. The distribution is shown in Fig. 2 (left). It is
clear that the non-parametric z-norm (denoted as nz-norm)
maps the entire score distribution to a predefined shape,
while the parametric z-norm only shifts and scales the score
distribution, but leaves its shape unchanged.
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Fig. 2 Illustration of the idea of non-parametric score
normalisation

The original score distribution (left) is only scaled and shifted with the
parametric normalisation technique (middle)
With the non-parametric technique, the entire distribution is mapped to a
predefined shape – in this case to a log-normal shape (right)

www.ietdl.org
Let us emphasise again that the proposed non-parametric
score-normalisation techniques allow us to conduct score
normalisation without any assumptions regarding the shape
of the impostor-score distribution. However, there are still a
number of issues that need to be kept in mind:

† Computational complexity: non-parametric score-
normalisation techniques require significantly more data for
the normalisation procedure than their parametric counterparts
and as such may result in an increased computational
complexity of the verification system during the run-time,
when the score distribution needs to be computed. This is
especially true for normalisation techniques involving scores
generated with the probe vector (such as the t-norm), as these
cannot be pre-computed off-line.
† Target distribution: parametric score-normalisation
techniques only shift and scale the score distributions in
accordance with the assumptions they make; non-parametric
techniques, on the other hand, require a target distribution
for the mapping in (9). This target distribution is an open
parameter of the non-parametric techniques that can affect
their performance.

In the next section, we introduce hybrid score-
normalisation techniques that try to mitigate the problem of
66
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computational complexity by combining non-parametric
and parametric score-normalisation techniques into hybrid
procedures. The target distribution still remains an open
parameter and needs to be selected empirically.

3.2 Hybrid score normalisation

We have pointed out before that popular score-normalisation
techniques such as the z- and the t-norm rely on the same
(Gaussian) assumption when normalising the scores, but
differ in the way that the scores (which are used for
estimating the parameters of the normalisation techniques)
are created. Owing to this difference, score-normalisation
techniques that operate on different scores are often
combined into two-step normalisation techniques, where
one technique is applied after the other. An example of
such a two-step normalisation technique can be found in the
zt-norm [3], where the t-norm technique is applied on
z-norm normalised scores. However, there are also other
examples, for example, [28].
Formally, two-step normalisation techniques can be

defined based on the following mapping

s′ = c(s′′) and s′′ = f(s) (11)

where both c and f denote the score-normalisation
techniques, as defined in (3), s″ denotes the normalised
version of the input score s after the first normalisation, and
s′ stands for the final normalised score. Although
parametric techniques are often combined into two-step
procedures, the authors of [7] suggested combining
non-parametric techniques. As we emphasised in the
previous section, such an approach is computationally
demanding and is, therefore often not suitable for
deployment in biometric verification systems.
To overcome this shortcoming, parametric and

non-parametric normalisation techniques can be combined
into a ‘hybrid’ (two-step) normalisation technique. In the
case of the zt-norm this means that the first step of the
normalisation technique, which relates to the score samples
created based on the scoring function associated with the
target/claimed identity, is conducted in a non-parametric
manner, whereas the second step of the normalisation
techniques, which relates to the sample-score population
created with the probe biometric sample, is conducted in a
parametric manner. Since the rank transform needed for the
non-parametric z-norm step can be conducted off-line and
the mapping in (9) can be implemented in the form of a
look-up table, the first step of the hybrid normalisation does
not induce any computational burden during the run-time.
The second step of the hybrid technique is identical to the
parametric version of the zt-norm.
Note that the proposed hybrid approach can be applied to

any two-step normalisation technique, where the first step
involves scores computed with scoring functions associated
with the target/claimed identities, and is not limited only to
the zt-norm studied in this paper.

4 Score-normalisation revisited

To provide a better insight into the characteristics of the
different score-normalisation techniques and emphasise
the differences between them conceptual diagrams of all
the normalisation techniques are presented in Fig. 3. Here,
‘no norm’ represents the matching process without score
ommons Attribution
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Fig. 3 Conceptual diagrams of different score-normalisation techniques

a No-norm
b z-norm
c t-norm
d zt-norm
e nz-norm
f nt-norm
g nzt-norm
h hzt-norm
Here, Ci denotes the claimed identity, xt denotes the probe feature vector, δi stands for the scoring functions associated with the ith identity, δ·t stands for the
scoring functions of the given t-model, n represents the number of z-impostor used to create the sample scores for the z-norm variants, mrepresents the
number of t-models used to create the sample scores for the t-norm variants and the abbreviation LUT stands for ‘look-up table’
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normalisation, ‘z-norm’ (Fig. 3b), ‘t-norm’ (Fig. 3c) and
‘zt-norm’ (Fig. 3d ) represent the parametric techniques,
‘nz-norm’ (Fig. 3e), ‘nt-norm’ (Fig. 3f ) and ‘nzt-norm’
(Fig. 3g) stand for the non-parametric versions of the
techniques shown in Figs. 3b–d, and ‘hzt-norm’ (Fig. 3h)
stands for the hybrid zt-norm. The same notation is also
used in the remainder of this paper.
Note that the score-normalisation techniques, which

operate on score distributions created by comparing the
target tempate/model with a number of probe vectors (i.e.
variants of the z-norm) [These techniques are often referred
to as target-centric normalisation techniques], can typically
Table 1 Comparison of different score-normalisation techniques

Normalisation
technique

Steps needed N

z-norm t-norm nz-norm nt-norm

z-norm × — — — t
t-norm — × — —
nz-norm — — × —
nt-norm — — ×
zt-norm × × — — t
nzt-norm — — × ×
hzt-norm — × × —

The table shows the steps needed for the given technique (not necessa
probe sample.
n/a stands for ‘not applicable’ since there is nothing to compute or stor

IET Biom., 2014, Vol. 3, Iss. 2, pp. 62–74
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pre-compute the parameters required for the normalisation
and, therefore do not result in an additional computational
burden. Normalisation techniques that operate on score
distributions created by comparing the probe sample to a
number of background identities (i.e. variants of the t-norm)
[These techniques are often referred to as probe-centric
normalisation techniques], on the other hand, need to
compute the score samples on-line and, therefore require an
additional computational effort. A summary of the storage
requirements and the computational steps that need to be
conducted on-line for different normalisation techniques is
presented in Table 1.
eed to store for each
client

Need to compute on-line for each
probe

wo parameters: μ, σ n/a
n/a two parameters: μ, σ

look-up-table n/a
n/a look-up-table

wo parameters: μ, σ two parameters: μ, σ
look-up-table look-up-table
look-up-table two parameters: μ, σ

rily in the correct order) and the storage requirements per client/

e.
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Table 2 Characteristics of FRGCv2 experiment 4

Database Image set #Images Image quality

FRGCv2 training 12 776 controlled and
uncontrolled

target/gallery 16 028 controlled
probe/query 8014 uncontrolled

SCFace training 480 controlled and
uncontrolled

target/gallery 800 randomly partitioned
probe/query 800 randomly partitioned

www.ietdl.org

5 Experiments

5.1 Experimental database and setup

For the experiments presented in the remainder of this paper,
we make use of two challenging databases, that is, the second
version of the Face Recognition Grand Challenge database
(FRGCv2) [29] and the SCFace database [30].
The FRGCv2 database features more than 40 000 facial

images (of 466 distinct subjects) captured in diverse
conditions (e.g. outdoors, indoors, under artificial lighting
etc.) and exhibits characteristics that are known to affect the
performance of existing face-recognition technology [31].
We select the most challenging experimental configuration
defined for the FRGCv2 database for our experiments, that
is, FRGCv2 Experiment 4. Here, 12 776 images are
available for the training, 8024 images for the probe/query,
and 16 028 images are at disposal for the gallery/target set.
The SCFace database contains 2080 images of 130 subjects

(16 images per subject) taken in uncontrolled indoor
environments using five video-surveillance cameras. The
images are of varying quality and resolution, except for one
image per subject, which represents a mug-shot image
captured in controlled conditions. For the SCFace database
we define a similar experimental protocol as for the
FRGCv2 database. Thus, we divide the data into disjoint
sets used for the training and testing. With the defined
protocol, 480 images of 30 subjects are used for the
training, whereas the rest is randomly partitioned into
gallery/target and probe/query sets. The experimental
protocols for both databases are summarised in Table 2.
Prior to the evaluation, we subject all of the images from

both databases to a preprocessing procedure that
geometrically normalises the facial images in accordance
with manually marked eye-centre coordinates, crops the
facial regions to a pre-defined size of 128 × 128 pixels and
finally applies the histogram equalisation to the cropped
images to improve the contrast and (partially) compensate
for the lighting conditions present during the image
acquisition. Some examples of the preprocessed facial
images from both databases are shown in Fig. 4.
For the experiments on the FRGCv2 database, we

implement a variant of principal component analysis (PCA)
[32] and use it in conjunction with the whitened-
cosine-based (or cosine Mahalanobis) similarity scoring
procedure. Based on the implemented classification
technique, we generate the 8014 × 16 028 similarity (or
matching score) matrix that forms the basis for assessing
the score-normalisation techniques [Note that considering
the entire 8014 × 16 028 similarity matrix when producing
Fig. 4 Samples from the FRGCv2 (left) and SCFace (right) databases

Note that the images are presented at different stages of the preprocessing chain –
a Geometric normalisation, cropping, scaling and histogram equalisation
b Geometric normalisation, cropping and scaling
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performance metrics on the FRGCv2 database corresponds
to the so-called all vs. all experimental scenario.]. This
setting more or less corresponds to a closed-set verification
scenario.
For the experiments on the SCFace database, we use a more

competent classification technique, that is, the technique
proposed by Liu [33]. The technique relies on Gabor filters
and Kernel Fisher Analysis for the classification. Like with
the FRGCv2 database, we again generate a similarity matrix
(of size 800 × 800) that forms the basis for the score
normalisation.

5.2 Performance measures

We measure the effectiveness of the score-normalisation
techniques based on the performance metrics derived from
the false-acceptance error rate (FAR) and the false-rejection
error rate (FRR). These error rates are defined as [34–37]

FAR(D) =
simp

∣∣∣simp ≤ D
{ }∣∣∣ ∣∣∣

simp

{ }∣∣∣ ∣∣∣ (12)

and

FRR(D) = scli
∣∣scli . D

{ }∣∣ ∣∣
scli
{ }∣∣ ∣∣ (13)

where {scli} and {simp} represent sets of client and impostor
scores generated during the experiments, respectively, |.|
returns the cardinality of its argument, Δ denotes the
decision threshold and that the inequalities are set in a way
that assumes that dissimilarity measures were used to
produce the matching scores. The FAR and FRR are
typically used as estimates for the two terms of the Bayes
error defined in (2).
the histogram of the SCFace samples has not been equalised yet
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Note that both the FAR and FRR are dependent on the

value of the decision threshold Δ. Thus, selecting a specific
value for this threshold results in different performance
metrics. For our assessments, we selected three such
metrics, that is, the equal error rate (EER), the verification
rate at the false-acceptance error rate of 0.1% (VER0.1FAR)
and the verification rate at the false-acceptance rate of
1% (VER0.1FAR). Here, the performance metrics can be
computed as follows

EER = 1

2
FAR(Deer)+ FRR(Deer)
( )

(14)

VER0.1FAR = 1− FRR(Dver01) (15)

and

VER1FAR = 1− FRR(Dver1) (16)

where the corresponding decision thresholds are defined as

Deer = argmin
D

|FAR(D)− FRR(D)| (17)

Dver01 = argmin
D

|FAR(D)− 0.001| (18)

and

Dver1 = argmin
D

|FAR(D)− 0.01| (19)

In addition to the presented performance metrics, we also
compute the half total error (HTER) at each operating point.
The HTER is defined as

HTERk =
1

2
FAR(Dk)+ FRR(Dk )
( )

(20)

where k∈ {eer, ver01, ver1}. Here, the HTER serves as an
estimate of the Bayes error defined in (2) under the
assumption of equal priors, that is, p(w1) = p(w2) = 0.5.
Next to the quantitative performance metrics presented

above, we also use performance curves to present the results
of our experiments. Specifically, we use receiver operating
characteristic (ROC) curves, which plot the verification rate
(VER) against the FAR for various values of the decision
threshold D, and the detection error tradeoff (DET) curves,
which plot the FAR against the FAR for various values of
the decision threshold D. In contrast to the ROC curves, the
DET curves use a non-linear scale for the x- and y-axes and,
therefore better emphasise the performance differences
between the assessed techniques [38].

5.3 Results and discussion

In our first series of verification experiments, we implement
three popular (parametric) normalisation techniques and
compare their performance to the performance of their
non-parametric counterparts. Specifically, we implement the
t-norm, z-norm and the two-step zt-norm as well as the
non-parametric equivalents, which are denoted as nt-norm,
nz-norm and nzt-norm in the remainder of this paper. Note
that it would be possible to conduct a tz-norm procedure
(by applying z-norm on t normalised scores); however,
since this would involve enormous amounts of computation
IET Biom., 2014, Vol. 3, Iss. 2, pp. 62–74
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for each test sample during the run-time, this options is not
feasible in practice and is therefore omitted from our
experiments. For this series of experiments, we use only the
FRGCv2 database.
Before the non-parametric normalisation techniques can be

implemented, a target distribution for (8) needs to be selected.
To this end, we assess different types of target distributions
when implementing the non-parametric normalisation
techniques, that is, uniform, Gaussian and log-normal
distributions. The three target distributions are defined as

punif (s
′) = 1

b− a
(21)

where in our case a = 0 and b = n [n denotes the number of
scores used for the normalisation – see (10)]

pgaus(s
′) = 1

s
����
2p

√ exp −(s′ − m)2

2s2

( )
(22)

where μ and σ represent the mean and the standard deviation
of the Gaussian distribution, and

plogn(s
′) = 1

s′s
����
2p

√ exp −(lns′ − m)2

2s2

( )
(23)

where μ and σ represent the mean and the standard deviation
of the log-normal distribution. For the experiments we select
μ = 0 and σ = 1 for the Gaussian target distribution and μ = 0
and σ = 0.5 for the log-normal distribution.
The results from this series of experiments are shown in the

form of DET and ROC curves in Fig. 5. Here, the pair of
graphs on the upper-left (marked as Fig. 5a) presents a
comparison of the baseline performance of the PCA
technique (denoted as NO NORM) and the performance of
the parametric and non-parametric versions of the z-norm.
For the non-parametric z-norms the name in the brackets
indicates the target distribution that was used to generate
the performance curves. The pair of graphs on the
upper-right (marked as Fig. 5b) shows the same comparison
for the parametric t-norm and the different versions of the
non-parametric nt-norm. The pair of graphs on the
lower-left side of Fig. 5 (marked as Fig. 5c) shows the
comparison of the baseline PCA technique and the zt- and
nzt-norms, while the last graphs on the lower-right (marked
as Fig. 5d ) depict a comparison of all the assessed
techniques in this series of experiments and their relative
ranking – for the non-parametric techniques only the results
for the log-normal target distributions are shown. The same
comparison is also shown in Table 3, where the
characteristic error rates are tabulated for the assessed
techniques.
The first thing to notice from the presented results is the

fact that except for the z-norms, where no significant
improvement over the baseline performance was observed,
all the other techniques resulted in significant performance
gains. In general, the two-step normalisation techniques
outperformed the single-step ones and the non-parametric
normalisation techniques consistently outperformed their
parametric equivalents along most operating points of the
DET and ROC curves when the log-normal distribution
was used as the target distribution. When the uniform
distribution was used as the target distribution for
the non-parametric score-normalisation techniques, the
performance of the biometric verification systems increased
69
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Fig. 5 Effect of (parametric and non-parametric) score normalisation on the verification performance – DET (left) and ROC (right) curves
generated during Experiment 4 on the FRGCv2 database (best viewed in colour)

a Comparison no-, z-, nz-norm
b Comparison no-, t-, nt-norm
c Comparison no-, zt-, nzt-norm
d Comparison – all
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for most operating points over the baseline (i.e. NO NORM),
but was worse than that of the parametric equivalents. For the
normal target distribution the performance of the
non-parametric score-normalisation techniques was very
similar to that of the parametric techniques, with very little
difference over all the operating points for all the
implemented methods.
Note that the improved performance of the

non-parametric normalisation techniques (with a log-normal
target distribution) comes at the expense of an increased
computational complexity. The non-parametric techniques
require significantly more data (i.e. a larger score
population) to estimate the entire score-distribution reliably,
while the parametric techniques only require enough data to
estimate the mean and the variance. This fact results in the
need for storing a larger background set of templates in a
face-verification system to ensure a sufficient number of
scores for the non-parametric normalisation techniques. If
storage is no issue, the non-parametric score-normalisation
Table 3 Quantitative comparison of the score-normalisation techniqu

Perform.
metric

No norm Parametric techniques

Uniform dis

z t zt nz nt

EER 0.413 0.407 0.226 0.196 0.411 0.25
VER0.1FAR 0.049 0.052 0.067 0.069 0.021 0.01
VER1FAR 0.114 0.118 0.199 0.247 0.077 0.08
HTERver01 0.526 0.524 0.516 0.516 0.540 0.54
HTERver1 0.493 0.491 0.450 0.427 0.512 0.50

The results for the non-parametric techniques are presented for three d
The best results for each presented performance metric are presented
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techniques can ensure a better verification performance than
their parametric counterparts.
When looking at the characteristic error rates in Table 3,

similar conclusions to the ones presented above can be made.
Of particular interest here are the values of the HTER, which
indicate that the Bayes error is indeed reduced with (most of)
the score-normalisation techniques. Here, the HTER at the
equal-error operating point equals the EER and is, therefore
not tabulated separately in Table 3. We can again see that the
non-parametric normalisation techniques with a log-normal
target distribution ensure the best verification performance.
We, therefore select this distribution for all of our subsequent
experiments.
Another interesting issue relevant in the context of

non-parametric score normalisation is the effect of
the normalisation procedure on the unseen client-score
distribution. With parametric score-normalisation techniques
this distribution is simply shifted and scaled based on
the mean and standard deviation computed from the
es on the FRGCv2 database with experiment 4

Non-parametric techniques

tribution Log-normal distribution Normal distribution

nzt nz nt nzt nz nt nzt

0 0.220 0.401 0.206 0.173 0.409 0.230 0.198
5 0.017 0.055 0.068 0.072 0.046 0.043 0.048
6 0.118 0.135 0.241 0.263 0.118 0.179 0.223
2 0.542 0.522 0.516 0.514 0.527 0.528 0.526
7 0.491 0.483 0.430 0.401 0.491 0.461 0.439

ifferent target distributions.
in bold.
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Fig. 6 Effect of a non-parametric score-normalisation technique (with a log-normal target distribution) on synthetic client and impostor-score
distributions

a Sample histograms before normalisation
b Sample histograms after normalisation

www.ietdl.org
impostor-score distribution. However, with the non-
parametric techniques the client distribution obtains
re-mapped in accordance with the CDF computed from the
impostor-score distribution. To examine this effect more
closely, we generate two synthetic score populations and
estimate their distributions as shown in Fig. 6. Here,
the light-blue distribution corresponds to the impostor
distribution that forms the foundation for the non-
parametric normalisation procedure and the dark-blue
distribution corresponds to the client distribution, which is
mapped along with the impostor distribution. Note that with
a target log-normal distribution the impostor-score
distribution takes an approximately log-normal shape after
the normalisation, while for the client-score distribution
most of the mass obtains concentrated around a specific
value and heavy tails appear on both sides of the
distribution. It is important to emphasise at this point that
when implementing the non-parametric techniques, we need
to ensure that the CDF from (7) (estimated from the
impostor-score distribution) is defined over the domain of
the client-score distribution as well, otherwise the part of
Fig. 7 Comparison of the two-step techniques – DET (left) and ROC (rig
(best viewed in colour)

The target distribution for the non-parametric part of the HZT-normalisation techn
The results for the nzt technique are shown here again for comparison purposes –
(lognormal)
a Comparison of parametric and non-parametric techniques
b Comparison of the two-step score-normalisation techniques
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the client-score distribution over the undefined domain
obtains mapped onto a single point.
So far, we have established the relative ranking of the

score-normalisation techniques, examined some of the
characteristics of the non-parametric score-normalisation
procedures and demonstrated the importance of choosing an
appropriate target distribution for the normalisation. The
next issue we need to investigate is the feasibility of the
hybrid two-step normalisation technique. In Section 3.2,
where we have introduced the hybrid normalisation scheme,
we proposed carrying out the first normalisation step in a
non-parametric manner based on a pre-computed look-
up table and conduct the second normalisation step
parametrically. This procedure exhibits approximately the
same computational complexity during the run-time as the
parametric techniques, but hopefully results in an improved
recognition performance. To assess the proposed hybrid
two-step zt-norm (denoted as hzt-norm in the figures) we
apply it to the FRGCv2 similarity matrix and compare the
generated results to the remaining two two-step procedures,
that is, the zt-norm and the nzt-norm, and the baseline
ht) curves generated during Experiment 4 on the FRGCv2 database

ique was again chosen to be lognormal
they are the same as in Fig. 5, where the technique was labelled nzt-norm
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Fig. 8 Effect of (parametric and non-parametric) score normalisation on the verification performance – DET (left) and ROC (right) curves
generated during experiments on the SCFace database (best viewed in colour)

a Comparison of parametric and non-parametric techniques
b Comparison of the two-step score normalization techniques

www.ietdl.org
performance of the PCA. The results of the experiments are
again shown in the form of DET (on the left) and ROC (on
the right) curves in Fig. 7.
The hybrid zt-norm technique achieves the VER0.1FAR of

11.1%, the VER1FAR of 30.8% and the EER of 18.3%. In
comparison to the parametric two-step normalisation
technique, the composite procedure produces better
verification results along all the operating points of the DET
and ROC curves. When compared to the non-parametric
two-step normalisation techniques, the proposed hybrid
procedure still results in a very competitive performance. At
this point, we need to stress that the lower computational
cost of the hybrid techniques comes at the expense of
storage requirements, as a look-up table needs to stored in
the verification system for each registered client.
Furthermore, the lower computational load is ensured only
for the run-time operation of the system (in verification
mode), as the look-up table needs to be computed during
the enrolment of a client.
To validate the findings made so far, we conduct additional

experiments on the SCFace database using a state-of-the-art
face-recognition technique (i.e. GaborKFA [33]). We again
implement all the normalisation techniques and again use
the log-normal target distribution for the non-parametric
techniques. We apply all the normalisation approaches to
our 800 × 800 similarity matrix and generate all the relevant
performance metrics and curves. The results of this series of
experiments are presented in Fig. 8 and Table 4.
As can be seen, the results of this series of experiments are

much closer together than in the case of the FRGCv2
database. Although almost all of the score-normalisation
techniques improve the verification performance over the
baseline, this improvement is not as large as on the
FRGCv2 database. The reasons for such a setting can
undoubtedly be found in the characteristics of the database
Table 4 Quantitative comparison of the score normalization techniqu

Perform. metric No norm Parametric techniques

z t zt

EER 0.219 0.220 0.212 0.21
VER0.1FAR 0.083 0.089 0.089 0.09
VER1FAR 0.267 0.267 0.281 0.28
HTER VER0.1FAR 0.506 0.506 0.506 0.50
HTER VER1FAR 0.418 0.409 0.409 0.40

The results for the non-parametric techniques are presented for the log
The best results for each presented performance metric are presented
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and the better performing classifier, which leaves less room
for an improvement through score normalisation. Overall,
the non-parametric and hybrid normalisation procedures are
again the best performing techniques considering all the
operating points on the ROC and DET curves. The
non-parametric techniques (with a log-normal target
distribution) again outperform their parametric counterparts
and the HTER is again reduced after the score
normalisation for most of the assessed normalisation
techniques. All in all, it seems that the findings made
during the experiments on the FRGCv2 database, generalise
to other databases as well.
In the last series of experiments, we tried to assess the

significance of the obtained results. To this end, we
observed the relative change in the EER with respect to the
baseline performance without normalisation as suggested by
Sun et al. [39]

rel. change of EER = EERnorm − EERbaseline

EERbaseline
(24)

Here, EERnorm stands for the EER after normalisation with
the selected score-normaliaation technique and EERbaseline

for the EER achieved without score normalisation. A
negative change of this metric implies an improvement over
the baseline.
To establish the significance of the observed results on the

FRGCv2 and SCFace databases, we randomly sub-sample the
original similarity matrices 20 times and generate box plots
for the relative change in the EERs. The results are shown
in Fig. 9. Note that because of the smaller number of
experiments on the SCFace database the dispersion of the
results is much larger for this database than for the
FRGCv2 database. In general, all the normalisation
techniques improve significantly over the baseline on the
es on the scface database

Non-parametric techniques Hybrid technique

nz nt nzt hzt

2 0.209 0.203 0.200 0.200
5 0.120 0.116 0.114 0.113
3 0.326 0.330 0.338 0.331
3 0.490 0.492 0.493 0.494
9 0.387 0.385 0.381 0.384

-normal target distributions.
in bold.
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Fig. 9 Box plots for some characteristic operating points on the FRGCv2 database (the plots were created by randomly sub-sampling the
original ROC data 20 times)

a Box plots for the FRGCv2 database
b Box plots for the SCFace database
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FRGCv2 database with the non-parametric and hybrid
two-step procedures significantly outperforming all the
other normalisation techniques. On the SCFace database not
all the normalisation techniques performed significantly
better than the baseline. However, the non-parametric and
hybrid two-step procedures significantly outperform the
baseline and the hybrid procedure also performs
significantly better than all the remaining normalisation
techniques (except for the nzt-norm).
To sum up, the results of our experiments suggest that

non-parametric score-normalisation techniques have the
potential to improve upon the performance ensured by the
parametric methods. Moreover, combining parametric and
non-parametric methods into a hybrid normalisation
procedure can reduce the run-time computational
complexity of the normalisation procedure, while ensuring
approximately the same recognition performance.

6 Conclusion

We have presented a new family of non-parametric
techniques for the score normalisation in face-verification
systems. We have shown that the techniques are capable of
ensuring an improved verification performance when
compared to their parametric counterparts, albeit at the
expense of a higher computational complexity. Furthermore,
we have demonstrated that parametric and non-parametric
normalisation techniques can be combined into hybrid
normalisation schemes to provide a trade-off between the
computational complexity and the performance. As part of
our future work, we plan to examine possibilities to
incorporate the non-parametric normalisation approach into
other possible client-impostor centric normalisation
techniques and assess their performance in open-set
verification experiments. Possible starting points for our
future work are state-of-the-art normalisation schemes such
as the one presented in [40].
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using simplified probabilistic linear discriminant analysis’, Int. J. Adv.
Robot. Syst., 2012, 9, pp. 1–10

32 Turk, M., Pentland, A.: ‘Eigenfaces for recognition’, J. Cognitive
Neurosci., 1991, 3, (1), pp. 71–86

33 Liu, C.: ‘Capitalize on dimensionality increasing techniques for
improving face recognition grand challenge performance’, IEEE
Trans. Pattern Anal. Mach. Intell., 2006, 28, (5), pp. 725–737
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