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Abstract Face recognition in uncontrolled environments
remains an open problem that has not been satisfactorily
solved by existing recognition techniques. In this paper,
we tackle this problem using a variant of the recently
proposed Probabilistic Linear Discriminant Analysis
(PLDA). We show that simplified versions of the PLDA
model, which are regularly used in the field of speaker
recognition, rely on certain assumptions that not only re-
sult in a simpler PLDA model, but also reduce the com-
putational load of the technique and - as indicated by our
experimental assessments - improve recognition perform-
ance. Moreover, we show that, contrary to the general be-
lief that PLDA-based methods produce well calibrated
verification scores, score normalization techniques can still
deliver significant performance gains, but only if non-
parametric score normalization techniques are employed.
Last but not least, we demonstrate the competitiveness of
the simplified PLDA model for face recognition by com-
paring our results with the state-of-the-art results from the
literature obtained on the second version of the large-scale
Face Recognition Grand Challenge (FRGC) database.

Keywords robust face recognition, probabilistic linear
discriminant analysis, simplified probabilistic linear dis-

criminant analysis, non-parametric score normalization
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1. Introduction

Face recognition represents a highly active research area
attracting the interest of an increasing number of R&D
groups from around the world each year. This interest is
fuelled by the vast number of deployment domains
where face recognition technology is applicable as well as
the potential commercial value of the technology [1].

Early research on face recognition focused mainly on
simple recognition problems, where all the facial images
to be recognized were captured in more or less identical
conditions, under controlled pose and illumination. This
early area was dominated by so-called appearance based
methods, such as the Principal Component Analysis
(PCA) [2], the Linear Discriminant Analysis (LDA) [3]
and other holistic methods (e.g., [4], [5] and [6]) that rep-
resent facial images in various subspaces, where the final
recognition step is performed.

With progress made in the areas of computer vision, ma-
chine learning and pattern recognition, researchers
started moving away from simple face recognition prob-
lems and began to tackle more realistic recognition sce-
narios where facial images were captured in different il-
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lumination conditions, under varying pose, etc. Research
during this period was directed more towards local tech-
niques, which try to describe spatially local facial areas
independently of one another and, hence, are less suscep-
tible to appearance variations caused, for example, by il-
lumination, pose or expression changes. Examples of
such techniques are presented in [7], [8] and [9].

Contemporary face recognition techniques rely on both
local feature as well as holistic approaches. Thus, they try
to mitigate the effects of appearance variations caused by
various influential factors by describing the face with lo-
cal feature vectors (or descriptors) and combining these
vectors on a higher level using holistic approaches ([10],
[11], [12]). While such hybrid methods are among the
most effective approaches to face recognition, as evi-
denced by various comparative assessments (e.g., [13]),
there is still plenty of room for improvement.

In this paper we focus on probabilistic approaches to face
recognition, which have proven successful in the past and
are particularly suited for building hybrid methods (see,
for example, [14] and [15]). Specifically, we study the re-
cently proposed Probabilistic Linear Discriminant Analy-
sis (PLDA) [16] on a large-scale face recognition problem
using the Face Recognition Grand Challenge database
[17]. We show that if large amounts of training data are
available for each subject, the PLDA model as introduced
in [16] quickly becomes computationally intractable and
other solutions for computing the PLDA model parame-
ters have to be sought.

Since the PLDA model is not exclusive to the domain of
face recognition, we look for solutions to the presented
problem in the field of speaker recognition, where a similar
model was independently developed and where many
modifications of the model exist [18], [19] and [20]. In our
experiments, we demonstrate that the simplified version of
PLDA - also known as the two-covariance model - presents a
viable solution for our large-scale face recognition problem
and that the model results in state-of-the-art recognition
performance. Furthermore, we show that in contrast to the
general belief that PLDA produces well calibrated verifica-
tion scores (and that, therefore, no score normalization
techniques are needed), certain types of score normaliza-
tion techniques still produce significant and - most of all -
consistent improvements in recognition performance.

The rest of the paper is structured as follows. In Section 2,
we briefly review the existing work and introduce the
main ideas relating to the PLDA model proposed in [16].
In Section 3 we describe the simplified version of PLDA,
providing details pertaining to the feature extraction
technique used prior to PLDA and introduce the proce-
dure for computing the verification scores for our ex-
periments. We assess the simplified version of PLDA and
state our main findings in Section 4 and conclude the pa-
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per with some final remarks and directions for future
work in Section 5.

2. Theoretical background and prior work

2.1 Introduction

Probabilistic Linear Discriminant Analysis (PLDA) repre-
sents a probabilistic version of LDA [2] and was originally
developed for the task of robust face recognition [15]. The
technique was applied on grey-scale images as well as on
feature representations derived from facial images using
local descriptors, and was shown to ensure state-of-the-art
recognition performance in both cases [16].

A similar model, known as Joint Factor Analysis (JFA), was
developed independently by Kenny et al. [18], [19], [20] for
the problem of speaker recognition' (SR) and demonstrated
even more success for the SR problem than PLDA did for
the problem of face recognition. In fact, the JFA model
quickly became one of the cornerstones of the speaker rec-
ognition machinery and, due to its efficiency demonstrated
at various NIST Speaker Recognition Evaluations, received
wide adoption from the speaker recognition community.
The most recent techniques from the SR field apply a spe-
cial form of the JFA (often referred to as PLDA by the SR
community as well) model to so-called i-vectors, which
represent low-dimensional feature vectors extracted from
speech signals of arbitrary length [21], [22], [23].

2.2 Mathematical Formulation

Both the PLDA model proposed in [16] and the JFA
model used by the SR community [21], [22], [23] for clas-
sifying i-vectors share a common mathematical formula-
tion, which can be described as follows. Let {n,:7 = 1,.,R}
denote a collection of feature vectors extracted from a set
of biometric samples (i.e., face images or speech signals)
of a particular individual. Next, the assumption behind
the PLDA model asserts that each feature vector 7, can be
decomposed as:

N, =m+®L +Ta, + ¢, (1)

where m denotes a global offset representing the average
feature vector; the columns of ® provide a basis for the
identity subspace (i.e., the eigenspace); f denotes a latent
identity vector having a standard normal distribution; the
columns of T' (the eigenchannels) provide a basis for the
channel subspace; a, represents a latent vector distributed
according to a standard normal distribution; and &, is a re-
sidual or noise term assumed to be normal with zero mean
and a diagonal covariance matrix X. Moreover, all latent vari-
ables are assumed to be statistically independent.

1 PLDA can be seen as a special case of JFA under certain as-
sumptions [18].
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The Maximum Likelihood (ML) point estimates of the
model parameters {m, ®,T, X} are typically learned from a
large collection of development (or training) data via an
EM algorithm [16].

2.3 Generalization of the PLDA model

The feature vector 1, described by Eq. (1) comprises two
parts: i) an identity-specific part f = m + ®f, which de-
scribes the between-identity variability and depends only
on the identity of the subject, but not on the particular in-
put sample, and ii) the channel component ¢, = I'a, + &,
which is sample-dependent and describes the within-
identity variability. In case the biometric samples repre-
sent facial images, the channel variability is commonly at-
tributed to the differences in image backgrounds and/or
lighting conditions, although some other more subtle
sources of variability like pose, facial expression or ageing
have an effect on it as well.

To summarize, the goal of PLDA is to decompose the
given input data d into an identity-dependent part f and
a channel-dependent part c:

d=f+c. @)

When tackling the above problem, the PLDA model
makes two basic assumptions: i) the identity vector f and
the channel vector c are statistically independent, and i)
the identity vector f and the channel vector ¢ are nor-
mally distributed. Since both assumptions are question-
able, a generalization of the PLDA model was proposed
[19] in which the Gaussian distributions are replaced by
heavy-tailed Student distributions that exhibit greater ro-
bustness to outliers, while at the same time allow for lar-
ger deviations of the feature vectors from the mean.
However, this relaxed modelling assumption comes at a
price. Both the implementation and run-time perform-
ance of the algorithm become more complex.

A different approach was, therefore, suggested in [24]
where a non-linear transformation of the feature vectors
was proposed prior to modelling. This transformation is
supposed to reduce the non-Gaussian behaviour of the
channel effects and, consequently, keep the computational
complexity of the technique low. It turns out that the sim-
ple length normalization applied to the feature vectors suf-
fices to achieve the desired effect. The results reported in
[24], [25] show that length normalization alleviates the
need for a more complex heavy-tailed PLDA model.

From the presented discussion, it is easy to see that the
PLDA model has received far more attention from the SR
community than it has from the face recognition commu-
nity. Consequently, several modifications have been pro-
posed for the task of speaker recognition, which have not
yet found their way into the field of face recognition. In
fact, our experience with the PLDA model proposed in
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[16] suggests that the technique quickly becomes compu-
tationally intractable if the number of training images per
subject is large. In this case, either some potentially valu-
able training data needs to be discarded or else modifica-
tions of the PLDA model introduced by the SR commu-
nity have to be adopted.

In the next section we present a modification of the PLDA
model - referred to as simplified PLDA or the two-
covariance model - which we propose to apply on low-
dimensional feature vectors extracted from facial images.
By using the simplified version of PLDA, we effectively
alleviate the problem of large amounts of training data
per subject and make the PLDA model more generally
applicable for the task of face recognition.

3. Simplified Probabilistic Linear Discriminant Analysis

3.1 Overview

Since the original PLDA model proposed for face recogni-
tion in [16] quickly becomes prohibitively computation-
ally expensive when the number of training samples per
subjects is increased, we present in this section a simpli-
fied version of the PLDA model (hereafter sPLDA), com-
monly referred to as the two-covariance model in the
speaker recognition literature.

Note that - similar to i-vector based SR systems - we first
extract low-dimensional feature vectors from the facial
images and use these feature vectors as an input to
sPLDA. In this paper, we adopt the Fisherfaces approach
(PCA+LDA) [3] coupled with within-class covariance
normalization (WCCN) for this purpose, even though any
other feature extraction technique producing feature vec-
tors of a low enough dimension could be employed for
this purpose as well. Here, the PCA+LDA subspace pro-
jection step is needed to reduce the dimensionality of the
input images and to ensure the feasibility of the training
procedure of the sSPLDA model.

The training stage, which is required before the sPLDA
model can be used in verification experiments, is typi-
cally conducted on some training or development data
and, in our case results, in PCA, LDA and sPLDA model
parameters. In the remainder of this section we first pre-
sent the simplified PLDA model. Next, we briefly review
the procedures used in this paper for computing feature
vectors from facial images. Last, but not least, we intro-
duce the procedure for matching score calculations.

3.2 The simplified PLDA model

If the dimensionality of the feature vectors {n,:r = 1,.,R}
to be modelled is of a sufficiently low dimension, the di-
agonality constraint imposed on the covariance matrix X
of the residual term &, in Eq. (2) is superfluous. Thus, we
are able to work with a full covariance matrix instead.
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This change eliminates the need for a separate eigen-
channel matrix I' since it can be effectively absorbed into
the covariance X. Consequently, the PLDA model simpli-
fies to the sSPLDA model:

N =m+®dp + ¢, 3)

It can be easily shown that this simplified PLDA model is
equivalent to the two-covariance model proposed in [6].
Note that the meaning of all variables in Eq. (3) is identi-
cal to the meaning presented in Section 2.2. Thus, m again
denotes a global offset, representing the average feature
vector; the columns of @ still provide a basis for the iden-
tity subspace (i.e., the eigenspace);  again denotes a la-
tent identity vector having a standard normal distribution
and &, is still a residual term, which, however, is now as-
sumed to be normally distributed with a zero mean and a
full covariance matrix X.

As we have seen, there are several important differences
between the PLDA and sPLDA models, which affect the
amount of training data the models are able to handle.
Most notably, the SPLDA operates in a low-dimensional
feature space, which allows it to use full covariance ma-
trices instead of diagonal ones, while the PLDA makes no
assumptions regarding the dimensionality of the feature
space, but instead presumes diagonal covariance matrices
for the residual term as well as an additional channel
term. The presented assumptions severely affect the train-
ing procedures of the two models and restrict the use of
the original PLDA model to application scenarios with a
limited amount of training data per subject. The inter-
ested reader is referred to [16] and [23] for more details
on the training procedures of both techniques.

3.3 Building the feature space

In the previous section, we indicated that it is necessary
to apply the sPLDA model in a low-dimensional feature
space. To this end, we employ the popular Fisherface ap-
proach [3] coupled with within-class covariance normali-
zation (WCCN) in this paper.

The Fisherface approach

The Fisherface approach is based on linear discriminant
analysis (LDA), which tries to achieve maximum class-
separation in a low-dimensional feature space by maxi-
mizing Fishers’ separability criterion. Consider a set of n
d-dimensional input samples (e.g., facial images) ar-
ranged into a d x n data matrix X = [xq, Xy, ..., x,] and let
us assume that each of these samples stems from one of N
classes, i.e., subjects labelled w4, 5, ..., wy. LDA seeks the
projection basis W that maximizes the ratio of the be-
tween-class to the within-class scatter matrix [26], i.e.:

JOW) = [WTEgW|/|WTZy, W]. (4)
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Here, the between-class and within-class scatter matrices
¥p and I, are defined as: Tz = YN, n;(uy — w)(uy — )7
and Xy = Z?’:lzxjewi(xj - ui)(xj - ,ui)T, and the symbols
W u; and n; denote the grand mean of all training sam-
ples, the i-th class conditional mean and the number of
feature vectors in the i-th class, respectively.

The result of the LDA training procedure is the transfor-
mation matrix W, which can be shown to consist of the
first d’<N-1 eigenvectors w; (i = 1,2, ...,d") of the follow-
ing equation:

E;l/lZBWi = /1iW,:, i= 1,2, ...,d,. (5)

By  using  the calculated subspace  Dbasis
W = [wy, Wy, ..., wyr] and an arbitrary input sample x cen-
tred around the grand mean, u can be projected into the

LDA subspace with the help of the following equation:
y=W'x-p, ©

thus reducing the vector’s dimensionality from d to d’
[26]. Note that the Fisherface approach applies the pre-
sented LDA technique in a PCA reduced space to avoid
singularity issues when inverting the within-class scatter
matrix in Eq. (5).

Within-class covariance normalization (WCCN)

The Within-Class Covariance Normalization (WCCN)
technique is a normalization method, originally intro-
duced in the context of Support Vector Machine (SVM)
modelling [27]. The WCCN tries to minimize the ex-
pected classification error on the training data. To achieve
this, the authors define a set of upper bounds on the clas-
sification error metric. Minimizing these bounds also
minimizes the classification error. The optimal solution of
the minimization problem is given in a form of a general-
ized linear kernel obtained by inverting the within-class
covariance matrix Xy, , (in our case defined in the LDA
subspace) computed as follows:

. AT
Swipa = Dic1 Zyjmi(yj' -0y — ) ()

where yjis the j-th feature vector from the i-th class in the
LDA subspace and f; is the mean of all training vectors of
the i-th class in the LDA subspace.

In order to apply WCCN normalization, each vector y
should be pre-multiplied by an upper triangular matrix
U, obtained through Cholesky decomposition of the ma-
trix EWLDA_I:

n = Uy, (8)

where 7 is an example of the low-dimensional feature
vectors that serve as the input to the SPLDA model.
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Figure 1. Sample images from two subjects from the FRGCv2 database (images from the target set — left, images from the query set - right)

3.4 Verification score

Given two face images, the basic task that needs to be ad-
dressed in face recognition is to decide whether they come
from a single person or from two different people. In the
language of the sSPLDA model, this translates as: given two
low-dimensional feature vectors, 7, and 7,, decide which
hypothesis is more likely: #; (both 1, and 7, share the
same identity variable ), or H; (the low-dimensional fea-
ture vectors were generated by two different identity vari-
ables B; and f3,). To test these hypotheses, we need to
evaluate the log-likelihood ratio (s};) given by:

s = log P (11,121 %)
r P |H)p(1,174)

For the sSPLDA model, given by Eq. (3), the log-likelihood
ratio is easily computed in a closed-form:

(P e 3)
(ki [ e ])

where Iy = @®T + % and I, = dPT. By setting m =0
(since it is a global offset that can be precomputed and
removed from all low-dimensional feature vectors) and
expanding the equation, we get s, =711 Qn; +n2Qn, +
2nT Py, + const, where:

s = log

Q = Zt_({lt - (Ztot - Zaczt_ol%:zac)_i,
P =25iZacCor — ZacZiotZac) -

The calculation can be further sped up by diagonalizing
the matrix P (see [22], [24] for details).

4. Experiments

This section presents the experimental assessment of the
sPLDA model. It commences by introducing the database
and experimental protocol used for experimentation and
continues by presenting the most important results and
findings.

4.1 Database and experimental protocol

All of our experiments were conducted on the second ver-
sion of the Face Recognition Grand Challenge (FRGCv2)
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database [16]. The database contains more than 40,000 fa-
cial images that correspond to 466 distinct subjects. The
images were captured in various environments (e.g., out-
doors, indoors, under artificial lighting, etc.) over a period
of several years and, hence, exhibit different characteristics
that are known to affect the performance of the existing
face recognition technology. Some examples of the images
from the FRGCv?2 database are shown in Figure 1.

For our assessments, we selected the most challenging of
the experimental configurations defined for the FRGCv2
database, namely, FRGC experiment 4. This configuration
defines three separate image sets that are used for experi-
mentation: i) the training set, which contains 12,776 images
of 222 subjects captured in controlled as well as uncon-
trolled conditions, ii) the target set, which contains 16,026
images of 466 subjects captured in controlled conditions,
and iii) the query set, which contains 8,014 images of 466
subjects acquired in uncontrolled conditions. The training
set is used to train potential background models (e.g., PCA
or LDA transformation matrices, universal background
models - UBMs, etc.) needed by the recognition system,
while the target and query sets serve as the basis for match-
ing score calculation. As we can see from Figure 1, there is
a clear mismatch between the external conditions in which
the target set (Figure 1 — left pair of images) and the query
set (Figure 1 — right group of images) were acquired. This
setting makes the FRGC experiment 4 particularly difficult
and represents a major challenge for the existing face rec-
ognition technologies. The characteristics of experiment 4
are summarized in Table 1.

To quantify our results, we provide verification rates at
the false accept rate of 0.1% for all of our experiments as
defined in the FRGC experimental protocol. Additionally,
we provide values for other characteristic operating
points on the Receiver Operating Characteristic (ROC)
curve, as well as the ROC curve itself, for all experiments.

FRGCv2 Set #Images Image quality
L Controlled &
Training 12776 Uncontrolled

Experiment4 | Target 16028 Controlled
Query 8014 Uncontrolled

Table 1. Characteristics of experiment 4 defined within the ex-
perimental protocol of the FRGCv2 database
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Figure 2. Sample images from the FRGCv2 database after the
pre-processing procedure

Prior to our experiments, we subject all of the images from
the FRGCv2 database to a pre-processing procedure that,
based on manually annotated eye coordinates, aligns the
face to a predefined position and crops the facial region to a
fixed size of 128x128 pixels. All the images are also con-
verted to grey-scale intensity images. Some examples of the
facial images from the database after pre-processing are
shown in Figure 2. Note here that no photometric normaliza-
tion or histogram manipulation was performed on the im-
ages, leaving much space for further improvement.

4.2 Results

In our first series of experiments we assess the perform-
ance of the simplified PLDA (sPLDA) model presented in
Section 3 and compare it to the original PLDA model
proposed in [16]. We also present results with respect to
the performance (of our own implementation) of Princi-
pal Component Analysis (PCA) [2], which represents the
baseline technique defined by the experimental protocol
of the FRGCv2 database.

As emphasized several times in the paper, the original
PLDA technique is not applicable if large amounts of im-
ages are available for each subject, which is exactly the
case with the FRGCv2 database.? To make the original
PLDA model feasible, we reduce the number of training
images per subject to 20 (through random selection). This
number is sufficiently small to allow for the original
PLDA method to run on our test equipment, comprised
by an Intel i5 3.2GHz dual core desktop PC with 8GB of
RAM. We managed to conduct an additional test on a
computer with 12GB of RAM, where the number of train-
ing images per subject was increased to 50. These two
configurations are denoted as PLDA (20) and PLDA (50)
in the remainder, with the numbers in the brackets indi-
cating the number of training images per subject used.

When training the sSPLDA model, we first train the PCA,
LDA and WCCN transformation matrices (see Section

2 Note that the authors of the PLDA technique made the source
code publicly available and this source code was also employed
in our experiments.
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3.3) that are needed to perform the first feature extraction
step required for the sSPLDA model. Here, we use a 600-
dimensional eigenspace and apply LDA in this reduced
space. We adopt LDA to further reduce the dimensional-
ity of our feature space to 200 and to increase the separa-
bility of our feature vectors. Finally, we subject the ex-
tracted PCA+LDA feature vectors to the WCCN normali-
zation procedure. No special effort is made to optimize
the hyper-parameters of the techniques - such as the
number of PCA eigenvectors or LDA discriminant func-
tions - towards the best possible performance. When
training the PLDA and sPLDA techniques, the dimen-
sionality of the final feature space is selected to be 200.
Finally, the last technique assessed in this series of ex-
periments - namely PCA - is implemented using 600 ei-
genfaces.

The results of this series of experiments are presented in
Figure 3 in the form of ROC curves, which plot the verifi-
cation rate against the false accept rate, and Table 2,
where several characteristic error rates are tabulated.
Here, EER denotes the so-called equal error rate, which
represents a characteristic operating point on the ROC
curve. More precisely, the EER stands for the operating
point, where the false rejection rate and false accept rate
are equal. VER@0.1%FAR denotes the verification rate at
the false accept rate of 0.1% and represents the most
common performance metric used when presenting rec-
ognition results on the FRGCv2 database. VER@1%FAR
stands for a similar performance measure as
VER@0.1%FAR and denotes the verification rate of the as-
sessed technique at the false accept rate of 1%.

The first thing to notice is that both the original PLDA
model as well as the sPLDA model significantly im-
proved upon the baseline performance of the PCA tech-
nique. In general, the simplified PLDA model performed
best with a verification rate of 74.1% at the false accept
rate of 0.1%, followed in order by the original PLDA
technique trained with 50, the original PLDA technique
trained with 20 images per subject and finally PCA. These
last three techniques achieved verification rates of 37.8%,
36.0% and 1.7% at the FAR of 0.1%, respectively.

It is interesting to see that the increase in training images
from 20 to 50 did not deliver any major performance
gains for the original PLDA model, suggesting that only a
little additional information was added to the model with
the increased number of training images per subject. An-
other focal point of the experiments is the performance
difference between the sPLDA and the original PLDA
model. As we can see, the sSPLDA model outperformed
the original PLDA model by a large margin. This can
mainly be attributed to the characteristics pertaining to
both types of models (such as diagonal vs. full covariance
of the residual term, low-dimensional vs. arbitrary-sized
feature vector, etc.).
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Figure 3. ROC curves generated during the first series of recogni-
tion experiments

Technique EER | VER@0.1%FAR | VER@I%FAR
PCA | 379 17 8.0
PLDA (20) | 11.1 36.0 62.0
PLDA (50) | 105 37.8 635
sPLDA | 35 74.1 90.7

Table 2. Characteristic error rates for the first series of experi-
ments (in %).

To get an impression of the generalization capabilities of
the sSPLDA model, we conduct a more detailed analysis of
the results obtained in the first series of recognition ex-
periments. To this end, we partition the query set defined
by Experiment 4 of the FRGCv2 experimental protocol
into images that belong to subjects that are also present in
the training set, and images that belong to subjects that
have no images in the training set of the FRGCv2 data-
base. The former group features a total of 3,494 images
(belonging to 153 subjects), while the latter features a total
of 4,520 images (belonging to 313 subjects). We compute
performance metrics for each group and observe the re-
sults, which are shown in the form of bar graphs in Fig-
ure 4. Note that the sPLDA model ensures the lowest

EER VER@0.1%FAR

37,80 _— F 2,40

PCA
: 370 0,70

PLDA (50)

18,20

PLDA (20) PLDA (20)

= NOT in training set

PLDA %.80: lll\'hami‘ngwl

3 : : :
ron o | — o PLOA 6

w04 |
PLDA . P
’ ‘ 93,30 SrLoA

equal error rate (see the left graph of Figure 4) on both
groups of images. Similarly, the model results in the
highest verification rate at the false accept rate of 0.1%
and the highest verification rate at the false accept rate of
1% for both groups of images. As expected, all the tech-
niques perform better on the images that belong to sub-
jects whose images are also in the training set. While the
sPLDA model achieves the highest recognition rates
among all the tested techniques on the images of subjects
that were not included in the training set, there is still
room for further improvement. To summarize, the first
series of recognition experiments has proven that the
sPLDA model is a viable solution to the problem of ro-
bust face recognition and that it exhibits the best gener-
alization capabilities among all the tested methods.

In our second series of experiments, we study the effect of
score normalization on the face recognition performance
of the assessed techniques, i.e., sSPLDA, PLDA (20) and
PCA. It is generally believed (see, e.g., [2], [4], [5]) that the
commonly used score normalization techniques - such as
z-, t-, zt- or tz-norm [12], [13], [14] - are less efficient with
and, hence, less important for PLDA-like methods than
other techniques. In this series of experiments, we evalu-
ate this claim and apply four normalization techniques
(i.e., z-, t-, zt- and tz-norms) to the similarity matrix gen-
erated during our experiments. Here, we do not rely on
separate cohort data to normalize the scores but produce
the first and second statistical moments needed by the
normalization techniques by examining the query-set to
target-set similarity matrix. This procedure is equivalent
to score normalization in a closed set scenario.

In addition to the four commonly used normalization
techniques, we also evaluate the impact of non-
parametric score normalization techniques on the per-
formance of our methods. Thus, we evaluate the impact
of non-parametric versions of the z-, t-, zt- and tz- norms
(denoted as NZ-, NT-, NZT- and NTZ-norm in the follow-
ing figures and tables) on the recognition performance of
the assessed techniques. Here, we follow the suggestion

VER@1%FAR

liJ,l[‘)

®NOT in training set
530

B NOT in training set PCA

WIN training set

m N training set

: . 2
o0 PLDA (20)

0,00 10,00 20,00 30,00 40,00 0,00 20,00
EER (%)

60,00 80,00 100,00 0,00 20,00 40,00 60,00 80,00 100,00

VER (%) VER (%)

Figure 4. Recognition performance for the assessed methods on the two image sets. Here, the first images set (i.e., red bars) comprises
images of subjects that are present in the training and query sets and the second images set (i.e., blue bars) comprises images of subjects
that are unique to the query image set. The graphs are shown for different performance metrics (from left to right): EER, VER@0.1%FAR

and VER1%FAR.
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on PCA scores on sPLDA scores on PLDA scores
Figure 5. ROC curves generated during the second series of recognition experiments
Method sPLDA PLDA PCA
Norm type No Y4 T ZT TZ No Y4 T ZT TZ No Z T ZT TZ
EER | 35 3.7 3.6 3.7 3.6 111 | 106 | 100 | 95 9.6 | 379 | 369 | 256 | 195 | 21.1
VER@0.1%FAR | 741 | 721 | 745 | 71.6 | 711 | 36.0 | 388 | 40.7 | 439 | 438 1.7 3.4 34 34 8.1
VER@1%FAR | 90.7 | 90.5 | 91.5 | 90.7 | 90.5 | 62.0 | 641 | 645 | 679 | 672 | 80 | 124 | 145 | 189 | 255
Table 3. Characteristic error rates (in %) achieved using standard normalization techniques.
Method sPLDA PLDA PCA
Norm type No NZ NT | NZT | NTZ | No NZ NT | NZT | NTZ | No NZ NT | NZT | NTZ
EER | 35 3.6 33 3.3 33 11.1 9.9 9.3 8.8 89 | 379 | 357 | 246 | 174 | 188
VER@0.1%FAR | 74.1 | 735 | 820 | 793 | 79.8 | 36.0 | 380 | 435 | 448 | 447 | 17 34 4.5 8.4 8.9
VER@I%FAR | 90.7 | 91.5 | 93.2 | 93.1 | 93.0 | 62.0 | 655 | 681 | 71.0 | 70.1 80 | 128 | 169 | 27.8 | 29.3

Table 4. Characteristic error rates (in %) achieved using non-parametric normalization techniques.

of [28] where non-parametric versions of score normaliza-
tion techniques were introduced to the field of face rec-
ognition, and select a log-normal distribution with a
mean of zero and a standard deviation of 0.5 as our target
score distribution.

The results of this series of experiments are presented in
Figure 5 and Tables 3 and 4. We can see that for the PCA
technique both types of score normalization techniques
(parametric as well as non-parametric) significantly im-
prove the recognition performance. Similarly, both types
of normalization techniques also improve the results of
the original PLDA model, even though they do so to a
lesser extent than was the case with PCA. However, with
the sPLDA model, the common parametric score nor-
malization techniques do not deliver consistent perform-
ance improvements or even worse, result in small degra-

Int J Adv Robotic Sy, 2012, Vol. 9, 180:2012

dations in the recognition performance. Non-parametric
normalization techniques, however, significantly improve
the performance of sPLDA. The most successful of the
non-parametric normalization techniques (i.e., the non-
parametric t-norm) improves the verification rate at the
false accept rate of 0.1% from 74.1% to 82.0%. Large im-
provements are also observed for the non-parametric zt-

Technique VER@0.1%FAR (in %)
sPLDA 82.0
GaborKFA [11] 76.0
LBP [29] 73.5
Gabor [29] 73.5
Gabor+LBP [29] 83.6
BBE baseline (NIST) 12.0

Table 5. Comparison of the verification rate at the false accept
rate of 0.1% for various methods from the literature.
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and tz-norms, which achieve verification rates of 79.3%
and 79.8% at the false accept rate of 0.1%, respectively.

Last, but not least, we compare the best performance
achieved in our experiments with the sPLDA model to
the state-of-the-art results from the literature. Specifically,
we compare the performance of the sSPLDA model to the
performance of: i) a technique relying on Gabor filters
and Kernel Fisher Analysis (denoted by GaborKFA) [11],
ii) a Gabor wavelet based method (denoted by Gabor)
[29], iii) a local binary pattern (LBP) based method (de-
noted as LBP) [29], iv) a combined method using Gabor
features and LBPs (denoted by Gabor+LBP) [29], and v)
the baseline PCA technique, for which results are pro-
vided by NIST (denoted by the BEE baseline). The com-
parison is shown in Table 5.

Note that the SPLDA model results in competitive recog-
nition performance. The only method from our compari-
son performing better than the sPLDA model is the Ga-
bor+LBP technique which, however, relies on two face
representations and a sophisticated pre-processing pro-
cedure. The results obtained with the sPLDA model, on
the other hand, rely on a single face representation and
no pre-processing whatsoever. In fact, the performance of
the sPLDA model could very likely be further improved
by incorporating a pre-processing procedure and, possi-
bly, using other face representations.

5. Conclusion and future work

We have shown in the paper that simplified versions of
the PLDA model that are commonly used in the speaker
recognition community are also applicable to the problem
of face recognition. We have demonstrated in large-scale
face recognition experiments on the FRGC database that
the simplified PLDA model applied on feature vectors ex-
tracted from facial images by means of LDA (coupled
with WCCN normalization) results in state-of-the-art rec-
ognition performance. Our future work in conjunction to
PLDA will be focused on incorporating a pre-processing
procedure into the simplified PLDA model, testing other
face representations such as Gabor features, LBPs or other
local descriptors and using colour information in the con-
text of PLDA.
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