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Abstract
Ear as a biometric modality presents a viable source for
automatic human recognition. In recent years local de-
scription methods have been gaining on popularity due to
their invariance to illumination and occlusion. However,
these methods require that images are well aligned and
preprocessed as good as possible. This causes one of the
greatest challenges of ear recognition: sensitivity to pose
variations. Recently, we presented Annotated Web Ears
dataset that opens new challenges in ear recognition. In
this paper we test the influence of alignment on recog-
nition performance and prove that even with the align-
ment the database is still very challenging, even-though
the recognition rate is improved due to alignment. We
also prove that more sophisticated alignment methods are
needed to address the AWE dataset efficiently.

1 Introduction
Ever growing need for human recognition over last decades
led to new techniques on various biometric modalities.
Ear as a biometric modality presents a promising case: it
is noninvasive, has a high degree of permanence, distinc-
tiveness and universality [1]. However, one of the most
difficult, still-open issues of ear recognition is pose vari-
ation: pictures of ears can be captured from various po-
sitions as shown in Fig. 5. The first step is therefore to
normalize and segment input data as good as possible.
Data normalization builds a foundation for the rest of the
recognition process. If data is difficult to work with and
no normalization is performed, even the best performing
state-of-the-art descriptors fail. In this paper we provide a
proof of concept using alignment based on normalization
technique that uses RANSAC [2] for projective transfor-
mation estimation and a calculation of average ears for
ear template and segmentation mask calculation.

In Section 2 we discuss existing ear alignment meth-
ods. The alignment method used in our experiments is
described in Section 3. Section 4 describes experiments.
Section 5 presents results. In Section 6 we conclude the
paper.

2 Existing ear alignment techniques
Ear pose normalization is an open problem. Compared
to face alignment it presents a greater challenge – ears

do not have a symmetry axis to support landmark posi-
tions [3] like faces do. Many authors for accurate ear
alignment rely on 3-dimensional information [4].

In [5] authors detect ear outer shape using Canny edge
detector and then rotate ear according to the longest dis-
tance, which represent the dominant ear axis.

In [6] the authors proposed a combination of active
contours techniques and ovoid model for ear fitting to
normalize ear features. They achieved encouraging re-
sults, using different pitch angles and different distances
of ears to camera.

In [7] author extracts outer ear rim out of binarized
image and then based on the longest distance aligns ear
to a normalized position.

Another promising method CPR (Cascaded Pose Re-
gression) was applied on ear alignment in [3], where outer
ear rim is fitted with ellipse. The ellipse, together with ear
is then transformed into the normal position.

Other, more general methods could be used as well,
such as congealing [8], or using optical flow estimation
for smaller corrections in ear pose variations.

The above methods work well, however, only when
ear is rotated in its main plane – i.e. when face is moved
in the pitch direction (see Fig. 4).

3 Alignment method
To acquire the aligned subset of AWE dataset [9] (http:
//awe.fri.uni-lj.si), we used the procedure de-
scribed below and visualized in Fig. 1.

The first step is SIFT (Scale Invariant Feature Trans-
form) [10] keypoint detection and SIFT keypoint descrip-
tion. Based on the calculated data, RANSAC [2] esti-
mates planar transformation of each image to the average
ear image. The transformation is then applied to the im-
age, together with ear mask. To make further processing
easier all images are resized with suitable factor to match
100 pixels in height and width corresponding to height.
All images are converted to grayscale as well, because
color data does not provide any viable information for
Local Phase Quantization (LPQ) [11] descriptor that we
are using in the recognition evaluation. At the end of this
procedure histogram equalization was performed as well.
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Figure 1: Flowchart of the alignment precedure.

3.1 SIFT
For feature extraction we used SIFT detector algorithm
provided in vlFeat library, however, due to small images
parameters need to be set appropriately:

• The peak selection threshold: 0.

• The non-edge selection threshold: 1000.

• The minimum l2-norm of the descriptors before
normalization: 2 (descriptors below the threshold
are set to zero).

• The number of levels per octave of the DoG scale
space: 200.

• The descriptor magnification factor: 5. The scale
of the keypoint is multiplied by this factor to obtain
the width (in pixels) of the spatial bins.

3.2 RANSAC
After feature extraction we estimate the homography from
extracted pairs of points and corresponding descriptors.
All descriptors and pair of points are passed to RANSAC,
which decides, depending on outliers distance, whether a
pair of points is viable or not. Iterations for estimating
transformation is by default set to 5, 000 iterations but
then increased to 10, 000 and 25, 000 iterations if needed.
If after that the alignment score is still bellow 40%, the
image is rejected. The alignment score is defined as m/a,
where m is number of matched SIFT keypoint pairs that
RANSAC managed to set in a plane and a is number of
all pairs. These thresholds were set experimentally.

3.3 Average ear
All images in our alignment procedure are aligned to an
average ear. The average ear is acquired by summing and
averaging all pixels of all images, which are annotated
as perfectly aligned – meaning that roll, pitch and yaw
axis are close to 0° and they are not occluded or contain
accessories. Because all ears in AWE are annotated, we
had the information if ear contains any accessories, if ear
is overlapped and most importantly if ear is already in
normal position, and if not, on which axis. Left average
ear was summed using 26 and right was summed using

Figure 2: First two images show average ear and mask,
respectively, the third image shows the resulting image
after mask has been applied.

29 images that met conditions listed above. To be able to
perform summing pixel by pixel all images must be same
sized, therefore images are padded with black on sides to
fit the largest picture. Padding ensure all ears are center
and are the same size, but at the same time vertical lines
on final image appears and because of this the average ear
is cropped to most inner vertical line. The final average
ear is shown in the first image in Fig. 2.

3.4 Segmentation
For further ear recognition procedure all aligned images
are cropped to fit the perfect ear and this is done using
binary mask gained from average ear. Since every ear is
aligned to average ear, binary mask provide perfect crop
and with that we ensure recognition is performed only
on area showing the ear. Binary mask of average ear is
shown in the second image in Fig. 2. Fig. 3 shows re-
sults of three stages: original image, aligned image and
masked image.

4 Experiments
4.1 Data
For experimental evaluation we use AWE dataset, where
images are annotated with pose variation angles. Experi-
ments are performed only on images containing left ears
– 520 images. On these images two separate subsets are
defined, according to the severity of pose variations. Pose
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Figure 3: Images showing three stages alignment step be-
fore features are extracted.

Yaw
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Roll

Figure 4: Diagram showing pitch, roll and yaw.

variations are shown in Fig. 4. Sample images, showing
properties of the two subsets, are shown in Fig. 5.

In the first subset only images with mild yaw and roll
angles (angles of up to 10°) are considered, with arbi-
trary pitch angle (there are 358 such images). In the
second subset all images, regardless of angles are used
(all 520 images). However, in both subsets images that
RANSAC is not able to transform, according to our rules
(as described in Section 3.2), are additionally removed.
Furthermore, images where only 1 image per person re-
main are removed as well. The final subsets sizes are 105
and 163 images for the first and the second subset, re-
spectively. Each aligned image has original counterpart,
which serves as a base dataset for the experimental eval-
uation.

4.2 Evaluations
To evaluate recognition performance we use AWE Tool-
box [9] that is freely available at http://awe.fri.
uni-lj.si. For both subsets we perform two eval-
uations: on non-aligned images and on aligned images.
To evaluate recognition performance we use Local Phase
Quantization (LPQ) [11] for feature extraction on image
data.

5 Results and discussion
The results on the subset I show improvement of aligned
ear images over non-aligned ear images with Rank-1 recog-
nition rate of 72.8% vs. 66.3%. Equal Error Rate (used
in verification setups) reduced from 27.65% to 24.45%,

Figure 5: Four images in the first line have significant
pitch angles and negligible roll and yaw and present the
easier dataset (subset I) for ear alignment. Four images
in the second line have all angles significant and present
the more difficult dataset (subset II) for ear alignment.

Table 1: Results of evaluation on subset I, showing per-
formance improvement using aligned images.

[%] Non-aligned Aligned

Rank-1 66.3± 11.0 72.8± 16.7

EER 27.7± 13.1 24.5± 10.9

Table 2: Results of evaluation on subset II, showing per-
formance drop when aligning difficult images.

[%] Non-aligned Aligned

Rank-1 65.6± 7.0 57.1± 6.0

EER 26.3± 4.8 30.0± 7.3

proving the usability of alignment method on images that
contain pose variation of up to 10° (Table 1).

However, the results on subset II, which contains im-
ages of higher roll and yaw angles (more than 10°), do
not show improvement. Here Rank-1 recognition rate
falls from 65.6% to 57.1%, while undesirable increase
of EER from 26.3% to 30.0% is also evident (Table 2).
This shows that normalization of images taken under se-
vere pose variations regarding roll and yaw (with angles
larger than 10°) cannot be addressed properly.

The results show that RANSAC planar transforma-
tion estimation succeeds on images, where mild roll and
yaw angles are present with only pitch angles being se-
vere and fails when roll or yaw angle are severe as well.
Furthermore, to the best of our knowledge, this problem
has not been successfully addressed in literature yet, us-
ing single 2-dimensional images only. This shows that
proper ear pose normalization is still an open problem.
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6 Conclusion
We have used RANSAC-based method for ear pose alig-
ment. Experiments showed that ear alignment to aver-
age ear, together with masking ear area, improve recog-
nition when head pitch variations are present in ear im-
ages. However, aligning ear images that contain severe
pose variation in roll and yaw still remains an open prob-
lem. We plan to further improve ear alignments and to
evaluate other existing ear normalization techniques such
as CPR, optical-flow based and build on top of them.
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