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Photometric Normalization Techniques for Illumination 
Invariance 

 
ABSTRACT 
Face recognition technology has come a long way since its beginnings in the previous 
century. Due to its countless application possibilities in both the private as well as 
the public sector, it has attracted the interest of research groups from universities 
and companies around the world. Thanks to this enormous research effort, the 
recognition rates achievable with the state-of-the-art face recognition technology 
are steadily growing, even though some issues still pose major challenges to the 
technology. Amongst these challenges, coping with illumination induced appearance 
variations is one of the biggest and still not satisfactorily solved. A number of 
techniques have been proposed in the literature to cope with the illumination 
induced appearance variations ranging from simple image enhancement techniques, 
such as histogram equalization or gamma intensity correction, to more elaborate 
methods, such as homomorphic filtering, anisotropic smoothing or the logarithmic 
total variation model. This chapter presents an overview of the most popular and 
efficient normalization techniques which try to solve the illumination variation 
problem at the preprocessing level. It assesses the techniques on the publicly 
available YaleB face database and explores their strengths and weaknesses from the 
theoretical and implementational point of view.    
 
 

1. Introduction 
Current face recognition technology has evolved to the point where its performance 
allows for its deployment in a wide variety of applications. These applications 
typically ensure (or impose) controlled conditions for the acquisition of facial images 
and, hence, minimize the variability in the appearance of different (facial) images of 
a given subject. Commonly controlled external factors in the image capturing process 
include ambient illumination, camera distance, pose and facial expression of the 
face, etc.  
In these controlled conditions, state-of-the-art face recognition systems are capable 
of achieving the performance level which can match that of the more established 
biometric modalities, such as fingerprints, as shown in a recent survey (Gross et al., 
2004; Phillips et al., 2007). However, the majority of the existing face recognition 
techniques employed in these systems deteriorate in their performance when 
employed in uncontrolled and unconstrained environments. Appearance variations 
caused by pose-, expression-and most of all illumination-changes pose challenging 
problems even to the most advanced face recognition approaches. In fact, it was 



 2 

empirically shown that the illumination induced variability in facial images is often 
larger than the variability induced by the subject’s identity (Adini et al., 1997), or, to 
put it differently, images of different faces appear more similar than images of the 
same face captured under severe illumination variations. 
Due to this susceptibility to illumination variations of the existing face recognition 
techniques, numerous approaches to achieve illumination invariant face recognition 
have been proposed in the literature. As identified in a number of surveys (Heusch et 
al., 2005; Chen, W., et al., 2006; Zou et al., 2007), three main research directions 
have emerged with respect to this issue over the past decades. These directions 
tackle the problem of illumination variations at either: 
 

• the pre-processing level, 
• the feature extraction level, or 
• the modeling and/or classification level. 

 
When trying to achieve illumination invariant face recognition at the pre-processing 
level, the employed normalization techniques aim at rendering facial images in such 
a way that the processed images are free of illumination induced facial variations. 
Clearly, these approaches can be adopted for use with any face recognition 
technique, as they make no presumptions that could influence the choice of the 
feature extraction or classification procedures.  
Approaches from the second group try to achieve illumination invariance by finding 
features or face representations that are stable under different illumination 
conditions. However, as different empirical studies have shown, there are no 
representations which would ensure illumination invariant face recognition in the 
presence of severe illumination changes, even though some representations, such as 
edge maps (Gao & Leung, 2002), gradient-based features (Wei & Lai, 2004), local 
binary patterns (Marcel et al., 2007) or Gabor wavelet based features (Liu, 2006; 
Štruc & Pavešić, 2009), are less sensitive to the influence of illumination. The 
unappropriatness of the feature extraction stage for compensating for the 
illumination induced appearance variations was also formally proven in (Chen et al., 
2000).  
The last research direction with respect to illumination invariant face recognition 
focuses on achieving illumination invariance at the modeling or classification level. 
Here, the techniques for compensating for the illumination changes are linked to the 
type of face model or classification technique employed in the face recognition 
system. Assumptions regarding the effects of illumination on the face model or 
classification procedure are made first and then based on these assumptions counter 
measures are taken to obtain illumination invariant face models or illumination 
insensitive classification procedures. Examples of these techniques include the 
famous illumination cones technique (Georghiades et al., 2001), the spherical 
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harmonics approach (Basri & Jacobs, 2003), the illumination light fields (Zhou & 
Chellapa, 2004), etc. While these techniques are amongst the most efficient ways of 
achieving illumination invariant face recognition, they usually require a large training 
set of facial images acquired under a number of lighting conditions and are, 
furthermore, also computationally expensive.    
It has to be noted that all of the presented research directions represent valid efforts 
in solving the problem of illumination invariant face recognition. However, as we 
have pointed out, the effectiveness of tackling the illumination effects at the feature 
extraction level is questionable, while the modeling and/or classification stages 
impose often unrealistic requirements with respect to the size and characteristics of 
the training image set. In this chapter, we will, therefore, focus on the (in our 
opinion) most feasible way of achieving illumination invariance, namely, exploiting 
techniques which compensate for the illumination changes during the pre-
processing stage. At this level computationally simple and simultaneously effective 
techniques for achieving illumination invariant face recognition can easily be 
devised.  
In the remainder of the chapter we will first describe the mathematical models 
governing the normalization process at the preprocessing level and will then present 
the most popular normalization techniques proposed and presented in the 
literature. All techniques covered in the chapter will ultimately be assessed on facial 
images from the YaleB database. 
 

2. Background 
Before we can turn our attention to different preprocessing techniques proposed in 
the literature to achieve illumination invariant face recognition, we need to establish 
a mathematical model explaining the principles of image formation and/or scene 
perception, which is capable of forming the foundation for our pre-processing. To 
this end, researchers commonly turn to the so-called retinex theory developed and 
presented by Land and McCann in (Land & McCann, 1971), which states that the 
perceived sensation of color in a natural scene shows a strong correlation with 
reflectance, even though the amount of visible light reaching the eye depends on the 
product of reflectance and illumination (Land & McCann, 1971). This means that the 
human visual system is capable of correctly perceiving colors even in difficult 
illumination conditions by relying on the reflectance of the scene and in a way 
neglecting the scenes illumination. The theory suggests that the perception of a 
scene or an image of the scene can be modeled as follows: 
  

),(),(),( yxLyxRyxI = ,                                                 (1)       
 

where I(x,y) denotes an image of a natural scene, R(x,y) denotes the reflectance and 
L(x,y) stands for the illumination (or luminance) at each of the spatial positions (x,y).   
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Here, the reflectance R(x,y) is linked to the characteristics of the objects comprising 
the scene of an image and is dependant upon the reflectivity (or albedo) of the 
scenes surface (Short et al., 2004), or, in other words, it accounts for the illumination 
reflected by the objects in the scene (Delac et al., 2006). The luminance L(x,y), on the 
other hand, is determined by the illumination source and relates to the amount of 
illumination falling on the observed scene.  
To produce illumination invariant versions of facial images, researchers commonly 
mimic the behavior of the human visual system and try to estimate the reflectance 
R(x,y) with the goal of adopting it as an illumination invariant representation of the 
face. Unfortunately, it is impossible to determine the reflectance of an image using 
Eq. (1), unless some assumptions are made regarding the nature of at least one of 
the factors of the presented imaging model. The most common assumptions 
adopted when estimating R(x,y) are (Park et al., 2008): 
 

• edges in the image  I(x,y) also represent edges in the reflectance R(x,y), and 
• the luminance L(x,y) changes slowly with the spatial position of the image  

I(x,y). 
 
Hence, the reflectance is assumed to be a high frequency phenomenon, while the 
luminance function is assumed to be a low-frequency phenomenon in nature. To 
determine the reflectance of an image, and thus, to obtain an illumination invariant 
image representation, the luminance L(x,y) of an image is commonly estimated first. 
This estimate L(x,y) is then exploited to compute the reflectance R(x,y) via the 
manipulation of the imaging model given by the expression (1). As we have already 
emphasized, the luminance is considered to vary slowly with the spatial position. It 
can, therefore, be estimated as a smoothed version of the original image I(x,y). 
Various smoothing filters and smoothing techniques have been proposed in the 
literature resulting in different normalization procedures that were successfully 
applied to the problem of face recognition under severe illumination changes. These 
(retinex-based) normalization techniques have common advantages as they exhibit 
relatively low computational complexity and impose no requirements for a special 
(generic or user-specific) training image set (Park et al., 2008). 
Of course, other pre-processing techniques used for achieving illumination invariant 
face recognition can also be found in the literature.  Some of these techniques are 
not based on the retinex theory, but can easily be linked to the imaging model in (1), 
while others are concerned with image characteristics which are not linked solely to 
illumination variations. While we will refer to the latter group of techniques as image 
enhancement techniques, we will use the term photometric normalization technique 
for any approach based on (or related to) the imaging model in (1). 
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3. Image enhancement techniques 
Image enhancement techniques represent a group of pre-processing techniques 
which try to render the input images in such a way that the resulting enhanced 
images exhibit some predefined characteristics. These characteristics may include 
the dynamic range of the intensity values of the image, the shape of the images 
histogram, the contrast of the image, etc. While image enhancement techniques are 
often deployed to ensure at least some level of robustness to illumination changes, 
their primary goal is not illumination invariance. Nevertheless, various empirical 
studies have proven their usefulness for robust face recognition in the presence of 
illumination variations. Due to these characteristics, we will in this section briefly 
describe four different image enhancement techniques often used as preprocessing 
steps for face recognition, namely, the gamma intensity correction, the logarithmic 
transform, histogram equalization and histogram remapping.    
  
3.1 Gamma intensity correction 
Let us denote an arbitrary 8-bit input face image of size a×b pixels as I(x,y). The 
gamma intensity correction transforms the pixel intensity values at each spatial 
position (x,y), for x=1,2,…,a and y=1,2,…,b, in accordance with the following 
expression (Gonzalez & Woods, 2002): 
 

γ
gam yxIyxI ),(),( = ,                                                    (2) 

 
where Igam(x,y) denotes the gamma intensity corrected form of the face image I(x,y), 
and γ stands for the so-called gamma value which controls the type of the mapping.  
When γ is set to a value of γ>1, dark regions in the original image become lighter in 
the gamma corrected one; similarly, when γ is set to a value of γ<1 the light regions 
in the original image become darker in the gamma intensity corrected one. An 
example of the effect of different gamma values on the appearance of an image is 
presented in Fig. 1. Here, the left pair of images shows an input face image (on the 
left) and the gamma intensity corrected one for γ=0.5, while the right pair depicts a 
face image (on the left) and the gamma intensity corrected image for γ=4.      
 

 
Figure 1: Two examples of gamma intensity corrected images for two different 

gamma values   
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3.2 Logarithmic transform 
Let us adopt the same notation as in the case of gamma intensity correction and 
denote the input face image to be enhanced as I(x,y). The logarithmic transform non-
linearly transforms the intensity values at each spatial position (x,y), for x=1,2,…,a 
and y=1,2,…,b, according to the following expression (Gonzalez & Woods, 2002): 
 

)],(log[),( yxIyxIlog = ,                                                (3) 

 
where Ilog(x,y) denotes the logarithm transformed input image I(x,y).  
The logarithmic transform improves the contrast of darker image regions by making 
them lighter and consequently ensures some level of robustness to illumination 
changes, as shown in Fig. 2.    
 

 
Figure 2: Impact of the logarithmic transform: original images (upper row), logarithm 

transformed images (lower row) 
 

3.3 Histogram equalization 
Let us again denote the input face image as I(x,y) and let us assume that the image is 
comprised of a total of N pixels with k grey-levels. Histogram equalization aims at 
transforming the distribution of the pixel intensity values of the input image I(x,y) 
into a uniform distribution and consequently at improving the image’s global 
contrast (Gonzalez & Woods, 2002; Štruc et al., 2009).  
Formally, histogram equalization can be defined as follows: given the probability 
p(i)=ni/N of an occurrence of a pixel with the grey level of i, where ni denotes the 
number of pixels with the grey-level of i in the image, the mapping from the original 
intensity value i to the new transformed one inew is given by (Heusch et al., 2005):   
 

∑ ∑
= =

==
i

j

i

j

j
new jp

N
n

i
0 0

)( .                                                (4) 

 

The above expression defines the mapping of the pixels’ intensity values from their 
original range, for example the 8-bit interval 0-255, to the domain of [0,1]. Thus, to 
obtain pixel intensity values in the original range, the result has to be rescaled. A 
visual example of the effect of histogram equalization on the appearance of facial 
images is shown in Fig. 3.  
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Figure 3: Impact of histogram equalization: original images (upper row), histogram 

equalized images (lower row) 
 
Note how applying histogram equalization improves the contrast of the facial 
images, but as seen on the last image of the lower row also greatly enhances the 
background noise. The demonstrated property of contrast enhancement makes 
histogram equalization one of the most frequently employed image enhancement 
techniques in the field of face recognition.      

 
3.4 Histogram remapping 
More recently, Štruc et al. (Štruc et al., 2009) suggested that mapping a non-uniform 
distribution to facial images can also ensure robust face recognition in the presence 
of severe illumination changes. The authors’ claim is based on the observation that 
while histogram equalization was empirically proven to provide enhanced face 
recognition performance when compared to unprocessed facial images, it is still only 
a useful heuristic, which represents a special case of the more general concept of 
histogram remapping techniques. With this class of techniques, the target 
distribution is not limited to the uniform distribution, but can rather represent an 
arbitrary one. Independent of the choice of the target distribution, the procedure of 
mapping an arbitrary distribution to the pixel intensity values of a facial image 
always follows the same procedure.  
The first step common to all histogram remapping techniques is the transformation 
of the pixel intensity values using the rank transform. The rank transform is basically 
a histogram equalization procedure which renders the histogram of the given image 
in such a way that the resulting histogram approximates the uniform distribution. 
Here, each pixel value in the N-dimensional image I(x,y) is replaced with the index (or 
rank) R that the pixel would correspond to if the pixel intensity values were ordered 
in an ascending manner. For example, the most negative pixel-value is assigned the 
rank of 1, while the most positive pixel-value is assigned the ranking of N. The 
presented procedure is equivalent to histogram equalization; the only difference is in 
the domain the pixel intensity values are mapped to. 
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Once the rank R of each pixel is determined, the general mapping function to match 
the target distribution f(x) may be calculated from (Gonzalez & Woods, 2002; 
Pelecanos & Sridharam, 2001; Štruc & Pavešić, 2009):  
 

∫
−∞=

=
+− t

x

dxxf
N

RN )(5.0                                              (5) 

 
and the goal is to find t. Obviously, the right hand side represents the cumulative 
distribution function (CDF) of the target distribution, while the left hand side 
represents a scalar value. If we denote the CDF of the target distribution as F(x) and 
the scalar value on the left as u, then the mapped value t can be determined by 
computing the following expression: 
 

)(1 uFt −= ,                                                            (6) 
 

where F-1 denotes the inverse of the target distributions CDF.  
To illustrate the effect of the histogram remapping technique on the appearance of a 
facial image, let us assume that our target distribution takes the following form: 
 

x
σμx

πσ
xf )2/)(lnexp(

2
1)(

22−−
= ,                                  (7) 

 
where the parameters μ and σ>0 define the shape of the presented lognormal 
distribution. Though the parameters of the distribution can be chosen arbitrary, we 
choose the mean value of μ=0 and standard deviation of σ=0.4 here. These 
parameters result in (visually) properly normalized images as shown in Fig. 4  
 

 
Figure 4: Impact of histogram remapping using a lognormal distribution: original 

images (upper row), images with a remapped histogram (lower row) 
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4. Photometric normalization techniques 
In this section we introduce the most popular techniques based on the retinex 
theory. We present their strengths and weaknesses and provide visual examples of 
the effects they produce when applied to facial images. 
 
4.1  The single scale retinex algorithm 
The single scale retinex technique, originally named the center/surround retinex 
algorithm, is one of the straightforward approaches that can be derived from the 
imaging model defined by Eq. (1) under the common assumptions with regard to the 
characteristics of the reflectance and luminance functions of an image.  
As proposed by Jobson et al. (Jobson et al., 1997a), the luminance and reflectance 
are first separated by taking the logarithm of the image, which results in the 
following expression: 
 

),(log),(log),(log yxLyxRyxI += .                                       (8) 
 

If we denote the logarithm of the reflectance as R’ and consider that the luminance 
L(x,y) can be estimated as a blurred version of the input image I(x,y), we can 
rearrange Eq. (8) into the final form: 
 

[ ]),(*),(log),(log),(' yxKyxIyxIyxR −= ,                               (9) 
 

where “*” denotes the convolution operator, K(x,y) denotes a smoothing kernel and 
R’(x,y) stands for the illumination invariant reflectance output of the single scale 
retinex algorithm.   
It has to be noted that, when implementing the single scale retinex algorithm, we 
first have to choose an appropriate smoothing kernel. Several options were 
presented in the literature (see, for example, (Moore et al., 1991)), one of the most 
prominent, however, was introduced by Jobson et al. in (Jobson et al., 1997a). Here, 
the smoothing kernel takes the form of a Gaussian: 
 

)exp(),( 2

2

c
rkyxK −= ,                                               (10) 

 

where r=(x2+y2)1/2, c denotes a free application dependant parameter, and k is 
selected in such a way that  
 

∫∫ = .1),( dxdyyxK                                                  (11) 
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Unfortunately, there are no rules on how to select the value of the parameter c. 
Instead, its value has to be determined through a trial and error procedure. Small 
values of the parameter c result in an extreme dynamic range compression of the 
intensity values of the images, while high values of the parameter produce only 
minimal changes in the reflectance when compared to the original image. Some 
examples of the effect of the single scale retinex algorithm are shown in Fig. 5. 
 

 
Figure 5: Impact of the single scale retinex technique: original images (upper row), 

processed images (lower row) 
 

As the algorithm results in the compression of the images’ dynamic range, the 
authors of the technique propose to clip the upper and lower parts of the histogram 
and rescale the remaining part of the histogram back to 8-bit interval.  
  
4.2  The multi scale retinex algorithm 
The multi scale retinex algorithm, proposed by Jobson et al. (Jobson et al., 1997b), is 
an extension of the single scale retinex approach presented in the previous section. 
While generally the single scale retinex technique produces good results with a 
properly selected Gaussian, there are still some shortcomings that limit a more 
extensive use of this normalization technique. The most significant issue not 
properly solved are halo affects1, which are often visible at large illumination 
discontinuities. Such discontinuities are the result of strong shadows being casted 
over the face, which are in violation of one of the basic assumptions of the retinex 
based photometric normalization techniques, namely, that the luminance varies 
slowly with the spatial position. 
To avoid the presented difficulties, the authors of the multi scale retinex technique 
proposed to use smoothing kernels of different sizes (i.e., different values of the 
parameter c) and basically combine the outputs of different single scale retinex 
implementations. Formally, the illumination invariant reflectance of an input face 
image I(x,y) using the multi scale retinex technique is computed as:  
 

[ ]( ),),(*),(log),(log),('
1

yxKyxIyxIwyxR i

M

i
i −=∑

=

                     (12) 

                                                 
1 The term “halo effect” refers to the appearance of a halo in a certain region of the image. 
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where Ki(x,y) denotes a Gaussian kernel at the i-th scale, and  wi stands for the 
weight associated with the i-th Gaussian kernel Ki(x,y). Note that the Gaussian 
kernels used for the smoothing are defined by the expressions (10) and (11). Some 
visual examples of the multi scale retinex technique applied to facial images are 
shown in Fig. 6.   

 
Figure 6: Impact of the multi scale retinex technique: original images (upper row), 

processed images (lower row) 
 
While the presented multi scale retinex approach reduces the halo effect which can 
occur with the single scale retinex technique, the implementational issue of selecting 
the most appropriate kernel sizes for illumination invariant face recognition still 
remains.  
 
4.3  The single scale retinex algorithm with adaptive smoothing 
One of the latest modifications to the single scale retinex technique was presented 
by Park et al. in (Park et al., 2008). Here, the authors propose to tackle the halo 
effects often encountered with the original single scale retinex technique by 
incorporating an adaptive smoothing procedure with a discontinuity preserving filter 
into the single scale retinex algorithm with the goal of robustly estimating the 
images’ luminance.  
As stated by the authors, the key idea of adaptive smoothing is to iteratively 
convolve the input image I(x,y) with the 3×3 averaging mask w(x,y) whose 
coefficients reflect the discontinuity level of the input image at each of the spatial 
positions (x,y). Mathematically, the iterative smoothing procedure at the (t+1)-th 
iteration is given by 
 

∑∑
−= −=

+ ++++=
1

1

1

1

)()(
)(

)1( ),(),(
),(

1),(
i j

tt
t

t jyixwjyixL
yxN

yxL                (13) 

 
and 
 

{ },),(),,(max),( )()1()1( yxLyxLyxL ttt ++ =                                   (14) 
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where the normalizing factor N(t) (x,y) is defined as 
 

∑∑
−= −=

++=
1

1

1

1

)()( ),(),(
i j

tt jyixwyxN .                                     (15) 

 
The global and a local discontinuity measures in form of the gradient magnitude and 
local inhomogeneity, respectively are exploited to determine the values of the 
adaptive averaging mask w(x,y) at each of the spatial positions (x,y). First, the 
gradient magnitude is computed based on the following expression: 
 

),(),(|),(| 22 yxGyxGyxI yx +=∇ ,                                     (16) 

 
where the partial derivatives are approximated as Gx(x,y) = I(x+1,y) - I(x-1,y) and 
Gy(x,y)=I(x,y+1)-I(x,y-1).   
 
The second discontinuity measure, the local inhomogeneity τ(x,y), is defined as the 
average of local intensity differences at each spatial position (x,y): 
 

|Ω|

|),(),(|
),( Ω),(∑∑ ∈

−
= nm

nmIyxI
yxτ .                                 (17) 

 
Here, Ω defines a 3×3 local neighborhood of the pixel location (x,y), and (m,n) 
indicates the locations of pixels in the local neighborhood Ω. Once the local 
inhomogeneity is determined, it is subjected to the following normalization 
procedure:  
 

,
),(

),(~
minmax

min

ττ
τyxτ

yxτ
−
−

=                                                (18) 

 
where τmax and τmin represent the maximal and minimal values of τ(x,y) across the 
entire face image. The final discontinuity measure is ultimately obtained by 
performing one last transformation which emphasizes the higher values of ),(~ yxτ : 
 

)),(~
2

sin(),(ˆ yxτπyxτ = .                                              (20) 

 
Both the gradient magnitude as well as the normalized and transformed form of the 
local inhomogeneity are combined as w(x,y)=α(x,y)β(x,y) to produce the 3×3 
averaging mask w(x,y) for each spatial position (x,y). Here, α(x,y) and β(x,y) denote 
the transformed discontinuity measures using the following conducting function: 
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= .                                                (21) 

 
Finally we have:  )),,(ˆ(),( hyxτgyxα = and )|,),((|),( SyxIgyxβ ∇= . Based on their 
empirical findings, the authors of the presented technique suggested to use between 
fifteen and twenty iterations to estimate the luminance function using equations 
(13) and (14) and to select the parameters of the conducting function somewhere in 
the range of 0≤h≤0.1 and 0≤S≤10. Similar to the single scale retinex technique, the 
final illumination invariant reflectance output is computed as: 
 

),(log),(log),(' yxLyxIyxR −= .                                       (22) 
 

Some examples of facial images processed with the presented technique are shown 
in Fig. 7. 
 

 
Figure 7: Impact of the single scale retinex with adaptive smoothing technique: 

original images (upper row), processed images (lower row) 
 
4.4  Homomorphic filtering 
Homomorphic filtering is one of the few photometric normalization techniques 
operating in the frequency domain. Similar to other techniques based on the retinex 
theory, the homomorphic filtering technique first separates the reflectance and 
luminance functions of the image I(x,y) by taking the natural logarithm of the 
imaging model in (1). The result, similar to the one presented in (8), is then used at 
the starting point for the normalization procedure.  
The second step of the technique represents the transformation of the image from 
the spatial to the frequency domain, which is easily achieved using the Fourier 
transform (Short et al., 2004): 
 

F {log I(x,y)}= F {log R(x,y)}+F {log L(x,y)},                                 (23) 
 

which can be written as the sum of two functions in the frequency domain. The first 
contains mainly high frequency components and is the frequency equivalent of the 
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spatial reflectance, the second function, on the other hand, is composed of mainly 
low frequency components and corresponds to the spatial luminance. The Fourier 
transform of the input image Z(u,v)= F {log I(x,y)} can be filtered (in the frequency 
domain) with the filter or transfer function H(u,v) that reduces the low frequencies 
and amplifies the high frequencies (Heusch et al., 2005; Short et al., 2004). The final 
illumination invariant image I’(x,y) is ultimately obtained by finding the inverse 
transform of the filtered image and taking its exponential, i.e., 
 

I’(x,y)=exp{ F 

-1[H(u,v).Z(u,v)]},                                      (24)  
 

where “.” denotes the element-wise multiplication. Note that the result of this 
normalization procedure is a normalized image I’(x,y) rather than the reflectance of 
the image since no direct subtraction of the luminance was performed. 
Nevertheless, the result still approximates the reflectance since the effect of the 
luminance was reduced and that of the reflectance emphasized through the filtering 
operation in the frequency domain. Some visual examples of the effect of 
homomorphic filtering are shown in Fig. 8. 
 

 
Figure 8: Impact of the homomorphic filtering technique: original images (upper 

row), processed images (lower row) 
 
It has to be noted that even though the filtering operation in the presented 
technique is performed in the frequency rather than the spatial domain, the basic 
issue of filter design still remains. To achieve a suitable performance of illumination 
invariant face recognition the filter parameters must be determined empirically.  
 
4.5  The self-quotient image 
Similar to the single scale retinex technique with adaptive smoothing, the self-
quotient image also represents a more recent addition to the group of photometric 
normalization techniques. Even though, originally not derived from the retinex 
theory, the self-quotient image can, nonetheless, be linked to other retinex-based 
approaches, especially to the multi scale retinex approach. We will not discuss the 
underlying theory of the self quotient image at this time, but rather point out that it 
is based on the so-called Lambertian model and the concept of the quotient image. 
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The reader should refer to (Basri & Jacobs, 2003) and (Shashua & Riklin-Raviv, 2001) 
for a more detailed description of these concepts. Here, we will only focus on the 
basic characteristics of the technique and the similarities with the retinex based 
methods. 
The self-quotient image, proposed and presented by Wang et al. in (Wang et al., 
2004), is based on a mathematical model similar to the one presented in Eq. (1). 
Therefore, the illumination invariant image representation Q(x,y) can be derived in 
the form of the following quotient: 
 

),(*),(
),(),(

yxIyxK
yxIyxQ = ,                                            (25) 

 
where the nominator of the above expression denotes the original input face image 
and the denominator represents the smoothed version of the input image. Like with 
the single and multi scale retinex approaches, K(x,y) again represents a smoothing 
kernel. Clearly, the technique takes its name from the fact that the illumination 
invariant image representation is derived based on the quotient of the original and 
smoothed version of the same input image.  
The key element of the self-quotient image, which distinguishes the procedure from 
other similar techniques presented in the literature, is the structure of the 
smoothing kernel K(x,y). For each convolution region, the kernel is modified using a 
weighting function, which is constructed as follows: first the mean value τ of the 
convolution region is computed, and based on this value, two non-overlapping 
regions (denoted as M1 and M2) are constructed (Du & Ward, 2005; Heusch et al., 
2005). Each pixel from the convolution region is then assigned to one of the two sub-
regions M1 and M2 based on the following criterion (Wang et al., 2004):  
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Assuming that there are more pixels in M1 than in M2 then the weights of the 
weighting function for the Gaussian smoothing filter G(x,y) are given by: 
 





∈
∈

=
2

1

),(if     ,0
),(if     ,1

),(
MyxI
MyxI

jiW ,                                           (27) 

 
and the final smoothing kernel K(x,y) is subject to the following condition: 
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In the above expressions M denotes a normalizing factor, G(x,y) represents the 
original Gaussian kernel and Ω stands for the convolution region. As stated by the 
authors of the self-quotient image technique, the essence of the anisotropic filter 
lies in the fact that it smoothes only the main part of the convolution region and, 
therefore, effectively preserves discontinuities present in the image. 
Due to similar reasons as the authors of the multi scale retinex technique, Wang et 
al. (Wang et al., 2004) also proposed to use different filter scales to produce the final 
illumination invariant image representation. This multi scale form of the self quotient 
image is obtained by a simple summation of self-quotient images derived with 
different filter scales. As the final processing step, a non-linear (logarithm, sigmoid 
function, …) mapping is applied to the self-quotient image to compress the dynamic 
range. Some examples of the deployment of the self-quotient image technique are 
shown in Fig. 9.    
 

 
Figure 9: Impact of the self-quotient image technique: original images (upper row), 

processed images (lower row) 
 
4.6  DCT-based normalization 
The discrete-cosine-transform-based (DCT) photometric normalization technique is a 
recently proposed normalization technique introduced by Chen et al. in (Chen, W., at 
al., 2006). Like the majority of approaches already presented in this chapter, the 
technique relies on the retinex theory and its accompanying imaging model and, 
hence, makes similar assumptions about the characteristics of the illumination 
induced appearance variations.  
The technique presumes that the illumination variations are related to the low 
frequency coefficients of the DCT transform and suggests discarding these low 
frequency coefficients before transforming the image back to the spatial domain via 
the inverse DCT in order to obtain an illumination invariant face representation 
(Chen, W., at al., 2006). To achieve illumination invariance, the DCT-based 
normalization takes the following steps: first the technique takes the logarithm of 
the input image I(x,y) to separate the reflectance and luminance. Next, the entire 
image is transformed to the frequency domain via the DCT transform, where the 
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manipulation of the DCT coefficients, with the goal of achieving illumination 
invariance, takes place.  Here, the first DCT coefficient C(0,0) is set to: 
 

MNμC ⋅= log)0,0( ,                                                  (29) 
 

where M and N denote the dimensions of the input image I(x,y) and μ is chosen near 
the mean value of I(x,y).   
A predefined number of DCT coefficients (drawn from the DCT coefficient matrix in a 
zigzag manner) encoding the low-frequency information of the image is then set to 
zero. As the final step, the modified matrix of DCT coefficients is transformed back to 
the spatial domain via the inverse DCT to produce the illumination invariant 
representation of the facial image. Some examples of applying the described 
procedure to face images are presented in Fig. 10. 
 

 
Figure 10: Impact of the DCT-based normalization technique: original images (upper 

row), processed images (lower row) 
 
It has to be noted that the authors of the technique suggest discarding between 18 
and 25 DCT coefficients for the best recognition performance.   
 
4.7  Wavelet-based normalization 
Du and Ward (Du & Ward, 2005) presented a photometric normalization technique 
which is based on the wavelet transform. The authors proposed to decompose the 
image via the 2D discrete wavelet transform (DWT) as to obtain the following four 
sub-bands: the low-low sub-band generated by the approximation coefficients and 
the low-high, the high-low and high-high sub-bands generated by the detail 
coefficients. The level one decomposition of an input face image into the four sub-
bands using the DWT is presented in Fig. 11. Note that the detail-coefficient-images 
(i.e., the images resembling the gradient magnitude of the input image) are scaled to 
the 8-bit interval for visualization purposes. 
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Figure 11: An sample image from the YaleB database (left) and its wavelet 

decomposition (right) 
 
After the decomposition, the four sub-bands are subjected to the photometric 
normalization procedure. First, histogram equalization is applied to the 
approximation coefficients to increase the dynamic range of the image and to 
enhance the image’s contrast. Then, the detail coefficients are multiplied by a scalar 
value higher than 1 to enhance edges present in the input image. Once all the sub-
bands have been modified, the illumination invariant face representation is obtained 
using the inverse DWT. The described procedure resembles the image enhancement 
technique histogram equalization, with the distinction that it also enhances the high 
frequency information contained in the input image. Some examples of the effect of 
the presented technique on the appearance of the facial images and a comparison 
with histogram equalization is shown in Fig. 12. 
 

 
Figure 12: Impact of the wavelet-based normalization technique: original images 

(first pair), histogram equalized images (second pair), and normalized images using 
the presented technique (third pair)   

 
 
Note that the presented wavelet-based normalization technique could be extended 
to the multi-resolution case (which is a common practice with the DWT) with an 
arbitrary wavelet. The authors, however, did not focus on this issue and adopted 
only the level one decomposition of the images using Daubechies wavelets for their 
normalization procedure.  
 
4.8  Wavelet-based image denoising 
Another wavelet-based photometric normalization technique was proposed by 
Zhang et al. in (Zhang et al., 2009). Here, the wavelet-based image denoising 
approach is exploited to obtain an illumination invariant representation of the facial 
image.  
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The technique starts with the modified imaging model of the retinex theory given by 
(8). Under the assumption that the key facial features are high frequency 
phenomena equivalent to “noise” in the image denoising model, the authors 
propose to estimate the luminance L’(x,y)=log L(x,y) by the wavelet denoising model 
and then to extract the illumination invariant reflectance R’(x,y)=log R(x,y) in 
accordance with Eq. (22). 
Let us denote the wavelet coefficient of the input image I’(x,y)=log I(x,y) as 
X(x,y)=W(I’(x,y)), where W stands for the 2D DWT operator; and, similarly, let 
Y(x,y)=W(L’(x,y)) denote the matrix of wavelet coefficients of the luminance L’(x,y). 
The estimate of the luminance in the wavelet domain Y(x,y) is then obtained by 
modifying the detail coefficients of X(x,y) using the so-called soft thresholding 
technique and keeping the approximation coefficients unaltered. Here, the soft 
thresholding procedure for each location (x,y) is defined as:  
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where Xs(x,y) denotes one of the three sub-bands generated by the detail DWT 
coefficients (either the low-high (LH), the high-low (HL) or the high-high (HH) sub-
bands, i.e., },,{ HHHLLHs∈ ), Ys(x,y) stands for the corresponding soft thresholded 
sub-band and T represent a predefined threshold.  
It is clear that for an efficient rendering of the facial images, an appropriate 
threshold has to be defined. The authors propose to compute the threshold T as 
follows: 
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where the standard deviations σ and σX are robustly estimated from: 
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In the above expressions “mad” denotes the mean absolute deviation and “var” 
denotes the variance. Note that the noise variance σ2 is estimated from the HH sub-
band, while the signal standard deviation σX is computed based on the estimate of 
the variance of the processed sub-band Xs(x,y) for },,{ HHHLLHs∈ . For an optimal 
implementation of the presented denoising procedure, the authors suggest using a 
value of λ somewhere in the range from 0.01 to 0.30.  
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Once, all three detail coefficient sub-bands have been thresholded, they are 
combined with the unaltered approximate coefficient sub-band to form the 
denoised wavelet coefficient matrix Y(x,y). The estimate of the luminance in the 
spatial domain is ultimately obtained by applying the inverse DWT to the wavelet 
coefficients in Y(x,y), and can be used to compute the illumination invariant 
reflectance. Some visual examples of the effect of the presented technique are 
shown Fig. 13. 
 

 
Figure 13: Impact of the wavelet-based image denoising technique: original images 

(upper row), processed images (lower row) 
 

 
4.9  Isotropic smoothing 
Isotropic smoothing follows a similar principle as the single or multi scale retinex 
algorithm already presented in this chapter. It tries to estimate the luminance L(x,y) 
of the imaging model in (1) as a blurred version of the original input image I(x,y). 
However, it does not apply a simple smoothing filter to the image to produce the 
blurred output, but rather constructs the luminance function L(x,y) by minimizing the 
following energy-based cost function (Short et al., 2004): 
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where the first term forces the luminance L(x,y) to be close to the original input 
image I(x,y), and the second term imposes a smoothing constraint on L(x,y), and the 
parameter λ controls the relative importance of the smoothing constraint [16].     
As stated in (Heusch et al., 2005), the problem in (33) can be solved by a discretized 
version of the Euler-Lagrange diffusion process: 
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Once, the above equation is set up for all possible pixel locations (x,y) it forms a large 
sparse linear system of equations that can be rearranged into the following matrix 
form: 
 

A·Lv=Iv ,                                                            (35) 
 
where Iv  represents the vector form of the input image I(x,y), Lv stands for the vector 
form of the luminance we are trying to compute and A denotes the so-called 
differential operator. It has to be noted that the dimensionality of the operator A is 
enormous as it represents a N×N matrix with N being the number of pixels in I(x,y). 
The equation given by (35), therefore, cannot be solved efficiently by a direct 
inversion of the square matrix A, rather multigrid methods have to be exploited to 
produce an estimate of the luminance L(x,y). The description of appropriate 
multigrid methods to solve the problem given by (35) is unfortunately beyond the 
scope of this chapter. The reader should refer to (Heusch et al., 2005) for a more 
detailed description of these methods. 
Let us assume that the multigrid method has been deployed to produce an estimate 
of the luminance L(x,y). Then, the illumination invariant reflectance can ultimately be 
computed by simply rearranging Eq. (1). Some examples of the normalized images 
using isotropic smoothing are shown in Fig. 14.     
 

 
Figure 14: Impact of the isotropic smoothing technique: original images (upper row), 

processed images (lower row) 
 
 
4.10 Anisotropic smoothing 
Photometric normalization using anisotropic smoothing is in its nature very similar to 
the isotropic smoothing technique presented in the previous section. The technique, 
proposed by Gross and Brajovic in (Gross & Brajovic, 2003), generalizes upon the 
energy-based cost function in (33) by introducing an additional weight function ρ(x,y) 
featuring the anisotropic diffusion coefficients, which enable the penalization of the 
fit between the original image I(x,y) and the luminance L(x,y). Or, in other words, the 
weight function ρ(x,y) ensures that the fit between the input image I(x,y) and the 



 22 

luminance L(x,y) can be influenced by an additional criterion. Thus, anisotropic 
smoothing is based on the following cost function: 
 

∫ ∫ ∫ ∫ ++−=
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Again, the above expression is solved by a discretized version of the Euler-Lagrange 
diffusion process, which for the anisotropic case takes the following form: 
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Gross and Brajovic suggested weighing the smoothing procedure with the inverse of 
the local image contrast. Thus, the goodness of fit between the input image and 
luminance is penalized by the inverse of this local contrast. They suggested two 
different contrast measures between pixel locations a and b, namely, the Weber and 
Michelson contrasts, which are defined as: 
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respectively. Note that the local contrast is actually a function of two pixel locations, 
i.e., ρ(b)= ρ(a,b); however, to be consistent with the notation in expression (37) we 
made a modification of the definitions of the contrast.  
Like with the isotropic case, setting up Eq. (37) for all possible pixel locations results 
in a large and sparse linear system of equation (similar to the one presented in (35)), 
which is efficiently solved by a properly selected multigrid method. Some examples 
of the effect of anisotropic smoothing are shown in Fig. 15. Here, the value of the 
parameter λ of λ=7 was used and Michelson’s contrasts was exploited as the local 
contrast measure.  
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Figure 15: Impact of the anisotropic smoothing technique: original images (upper 
row), processed images (lower row) 

 
 
It has to be noted that the usefulness of the anisotropic smoothing procedure 
heavily depends on the right choice of the parameter λ (the same goes for the 
isotropic smoothing). Unfortunately, there is no explicit rule on how to select the 
parameter to achieve the best possible recognition results in the presence of 
illumination induced appearance variations. 
  
4.11 The logarithmic total variation model 
The last photometric normalization technique covered in this chapter is the 
logarithmic total variation model proposed by Chen et al. in (Chen, T. et al., 2006). 
Like the self-quotient image, the logarithmic total variation model relies on the 
Lambertian model of images rather than the imaging model derived from the retinex 
theory.  
The logarithmic total variation model is based on a variant of the total variation 
model commonly abbreviated as TV-L1 (see (Chen, T.F. et al., 2004) for a more detail 
description of the model). This TV-L1 model is capable of separating or decomposing 
an input image I(x,y) into two distinct outputs, the first, denoted as u(x,y), containing 
large scale facial components, and the second, denoted as v(x,y), containing mainly 
small scale facial components. To be consistent with the notation adopted in 
previous sections, we will still presume that an input image can be written as a 
product (I(x,y)=R(x,y)L(x,y)) of two components; however, as already indicated, these 
components are linked to the Lambertian model and, hence, represent the surface 
albedos and light received at each location (x,y).   
 
The photometric normalization procedure starts by taking the logarithm of input 
face image I’(x,y) = log I(x,y), and then solves the variational problem of the following 
form to estimate the large scale component u(x,y): 
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where )|,(| yxu∇  denotes the total variation of u(x,y) and λ stands for a scalar 
threshold on scale.  
As noted in (Chen, T. et al., 2006), the expression given by (39) can be solved by a 
number of techniques, for example, PDE-based gradient descent techniques, 
interior-point second order cone programs or network flow methods. The 
description of these methods is beyond the scope of this chapter; however, the 
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reader should refer to (Alizadeh & Goldfarb, 2003) for more information on some of 
the listed techniques. 
Once the large scale component u(x,y) is computed, it can be used to determine the 
illumination invariant small scale component v(x,y) as: 
 

),(),('),( yxuyxIyxv −= .                                                 (40) 
 

It was shown by the authors of the technique that the logarithmic total variation 
model exhibits desirable properties, such as edge preservation and multi-scale 
decomposition (Chen, T. et al., 2006). The authors, furthermore, suggest using the 
following values for the scalar threshold λ:  λ=0.7 to 0.8 for images of 100 × 100 
pixels, λ=0.35 to 0.4 for images of 200 × 200 pixels, and λ=0.175 to 0.2 for images of 
400 × 400 pixels. Some examples of normalized images using the presented 
technique are presented in Fig. 16.  

 
Figure 16: Impact of the logarithmic total variation model: original images (upper 

row), processed images (lower row) 
 

5. Experimental assessment 
 

5.1 Databases and experimental setup 
To assess the performance of the presented photometric normalization techniques, 
we conduct face recognition experiments using the publicly available YaleB and 
XM2VTS face databases (Georhiades et al., 2001; Messer et al., 1999).  
The first, the YaleB face database, was recorded at the Yale University and contains 
images of 10 distinct subjects taken under 576 different viewing conditions (9 poses 
× 64 illumination conditions). Thus, a total of 5760 images is featured in the database 
and can be used for assessing the robustness of different algorithms to facial 
illumination and pose changes. However, as this chapter is only interested in the 
illumination induced appearance variations and their impact on the recognition 
performance, we employ a subset of 640 facial images with frontal pose in our 
experiments.  
Following the suggestion of the authors of the database, we divide the selected 640 
experimental images into five image sets according to the extremity of illumination 
present during the image acquisition (the reader is referred to (Georhiades et al., 
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2001) for a detailed description of these subsets). We can see from Fig. 17 that the 
first image set (S1) comprises images captured in “excellent” illumination conditions, 
while the conditions get more extreme in the image sets two (S2) to five (S5). Due to 
these characteristics, we employ the first image set (featuring 7 images per subject) 
for training and the remaining ones for testing. Such an experimental setup results in 
highly miss-matched conditions for the recognition stage and poses a great challenge 
to the photometric normalization techniques (Štruc & Pavešić, 2009). Furthermore, it 
is also in accordance with real life settings, as the training and enrollment stages are 
commonly supervised and, hence, the training and/or enrollment images are usually 
of good quality. The actual operational conditions, on the other hand, are typically 
unknown in advance and often induce severe illumination variations. 
 

 
Fig. 17: Sample images of two subjects from the YaleB face database drawn from 

(from left to right): image set 1 (S1), image set 2 (S2), image set 3 (S3), image set 4 
(S4) and image set 5 (S5). 

 
The second, the XM2VTS database, features 2360 facial images of 295 subjects, with 
the images being captured under controlled conditions. For the experiments 
presented in the next sections, the database is divided into client and impostor 
groups and these groups are further partitioned into training, evaluation and test 
sets, as defined by the first configuration of the experimental protocol associated 
with the database (Messer et al., 1999). As the XM2VTS database features only 
images captured in controlled conditions, it is employed as a reference database for 
measuring the effect that any given photometric normalization technique has on 
images not affected by illumination changes. Some sample images from the 
database are shown in Fig. 18. 
 

 
Fig. 18: Sample images from the XM2VTS database 
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In all experiments we use Principal Component Analysis (PCA) as the feature 
extraction technique, and the cosine similarity measure in conjunction with the 
nearest neighbor classifier for the classification. To make the experimental setup 
more demanding we retain merely 15% of the PCA coefficients, while the remaining 
85% are discarded. This setup results in 10 PCA coefficients being employed for the 
experiments on the YaleB database and 90 PCA coefficients being used for the 
experiments on the XM2VTS database. Note that the feature vector length is not the 
primary concern of our experiments and could also be set differently.   
Prior to feature extraction, we first apply a pre-processing procedure to all 
experimental images to remove artifacts not related to the face and to align the 
facial landmarks. The images are then cropped to the standard size of 128×128 pixels 
and stored as 8-bit grey-scale images for further processing. Note that manually 
marked eye coordinates are adopted for the presented pre-processing stage to 
ensure that localization errors do not interfere with the recognition results.    

 
5.2 Assessing the image enhancement techniques 
In our first series of face recognition experiments, we assess the performance of the 
image enhancement techniques, namely, histogram equalization (HQ), gamma 
intensity correction (GC) with γ=4, logarithmic transformation (LT) and remapping of 
the image histogram to a lognormal distribution (HL) for μ=0 and σ=0.4. For baseline 
comparisons, experiments on unprocessed grey scale images (GR) are conducted as 
well. Note that the listed techniques are tested separately from other photometric 
normalization techniques due to their intrinsic characteristics, which make them 
more of a complement than a real substitute for other, more elaborate, photometric 
normalization techniques - an observation supported by the following facts: 
 
• image enhancement techniques do not result in dynamic range compression as 

is the case with the photometric normalization techniques; rather, they cause a 
remapping of the pixel intensity distribution of the processed facial images, 

• image enhancement techniques do not rely on the mathematical model 
presented in Section 2, but are linked to basic image properties, such as, for 
example, image contrast, and  

• image enhancement techniques (histogram equalization in particular) were 
shown to improve the recognition performance of various face recognition 
techniques even when the facial images exhibited no illumination induced 
appearance variations; hence, they cannot be considered as being solely 
photometric normalization techniques. 

 

The results of the assessment on the YaleB database in terms of the rank one 
recognition rate (in %) for all tested image sets are shown in Table 1. Here, the 
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numbers in the brackets next to the image set labels S1 to S5 denote the number of 
images in each of the test subsets. We can see that on the experimental set S5 all 
image enhancement techniques resulted in an increase of the recognition rate, while 
surprisingly only the HQ and HL improved upon the baseline recognition rate on the 
test sets S3 and S4.  
 

Image set GR HQ GC LT HL 
S2 (120) 100 100 100 100 100 
S3 (120) 93.3 99.2 73.3 67.5 95.8 
S4 (140) 42.1 53.6 35.7 33.6 75.0 
S5 (190) 13.7 53.2 35.8 35.3 75.0 

Table 1: Rank one recognition rates obtained on the YaleB database with the tested 
image enhancement techniques 

 
The results of the assessment on the XM2VTS database are presented in Table 2. 
Note that differently from the YaleB database, images from the XM2VTS database 
are used in face verification rather than identification experiments. Hence, the 
performance of the photometric normalization techniques is assessed in terms of 
the false rejection error rate (FRR), the false acceptance error rate (FAR), and the 
half total error rate (HTER) defined as the mean of the FAR and FRR. All errors are 
computed based on the threshold that ensures equal error rates on the evaluation 
sets. 
 

Image set Error (%) GR HQ GC LT HL 

Evaluation 
set (ES) 

FRR 9.3 8.2 10.2 11.3 8.8 

FAR 9.3 8.2 10.2 11.3 8.8 

HTER 9.3 8.2 10.2 11.3 8.8 

Test  set (TS) 

FRR 6.5 4.8 7.3 7.8 6.3 

FAR 9.7 8.4 11.3 12.5 9.2 

HTER 8.1 6.6 9.3 10.2 7.8 

Table 2: The verification performance of the tested image enhancement techniques 
on the XM2VTS database 

 
Similar to the results presented in Table 1, we can see that only the HQ and HL 
techniques ensured better performance than the unprocessed grey-scale images, 
while the GC and LT did not improve upon the baseline error rates obtained with the 
unprocessed images.  
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It was suggested by Short et al. in (Short et al., 2004) that HQ should be used with 
photometric normalization techniques to further enhance their performance. 
However, based on the presented results, we can conclude that mapping a 
lognormal distribution to the pixels intensity distribution of the images might be 
useful as well. This issue will be further investigated in the remainder of this chapter.    
 
5.3 Assessing the photometric normalization techniques 
Our second series of face recognition experiments aimed at evaluating the 
performance of the photometric normalization techniques presented in Section 4. In 
Tables 3 and 4, where the results of the assessment are presented, the following 
abbreviations are used for the tested techniques: SR for the single scale retinex, MR 
for the multiscale retinex, SRA for the single scale retinex with adaptive smoothing, 
HO for the homomorphic filtering, SQ for the self quotient image, DCT for the 
discrete cosine transformation based normalization, WA for the wavelet based 
normalization, WD for the wavelet denoising, IS for the isotropic diffusion, AN for the 
anisotropic diffusion and LTV for the logarithmic total variation model.  

 
Sets SR MR SRA HO SQ DCT WA WD IS AN LTV 

S2 (120) 100 100 100 100 100 100 100 100 100 94.2 100 
S3 (120) 99.2 94.2 100 100 100 95.0 100 100 94.2 97.5 100 
S4 (140) 82.9 71.4 98.6 84.3 98.6 59.3 55.0 98.6 84.3 80.1 99.3 
S5 (190) 81.1 66.8 99.5 81.1 100 42.6 52.1 99.5 76.8 87.4 99.5 

Table 3: Rank one recognition rates obtained with the tested photometric 
normalization techniques 

 

Sets Err.  
()(%) 

SR MR SRA HO SQ DCT WA WD IS AN LTV 

ES 

FRR 12.7 13.0 10.0 18.7 11.8 12.0 8.3 20.8 15.8 21.3 17.8 

FAR 12.7 13.0 10.0 18.7 11.8 12.0 8.3 20.8 15.8 21.3 17.8 

HTER 12.7 13.0 10.0 18.7 11.8 12.0 8.3 20.8 15.8 21.3 17.8 

TS 

FRR 8.0 8.0 7.0 12.3 7.0 9.3 4.8 13.0 7.8 19.3 11.8 

FAR 13.3 13.6 10.1 18.2 12.2 13.2 8.5 20.5 15.7 21.4 17.3 

HTER 10.7 10.8 8.6 15.3 9.6 11.3 6.7 16.8 11.7 20.4 14.6 

Table 4: The verification performance of the tested photometric normalization 
techniques on the XM2VTS database 

 
The results of the experiments suggest that while the majority of photometric 
normalization techniques ensure significant improvements upon the baseline 
performance of the unprocessed images on the YaleB database, they result in a 
deterioration (in most cases) in performance on images captured in controlled 
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conditions, i.e., on the XM2VTS database. Such a result can be linked to the fact that 
the photometric normalization techniques remove the low frequency information, 
which is susceptible to illumination changes, even though it is important for the 
recognition task.  
Considering the performance of the tested techniques on both databases, we can 
conclude that the SRA and SQ techniques resulted in the best performance with 
nearly 100% rank one recognition rates on the YaleB database and the HTER almost 
identical to that obtained with unprocessed grey-scale images on the XM2VTS 
database.       
It has to be noted, however, that the performance of all tested techniques heavily 
depends on their implementation, and even more on the proper selection of their 
parameters. Since there is no theoretical foundation for determining these 
parameters, they have to be set empirically.  Having said that, we can quickly notice 
that differently from the results obtained by other researchers (Heusch et al., 2005, 
Short et al., 2004), our implementation of the diffusion based techniques IS and AN 
did not result in a competitive performance. This can mainly be linked to the 
selection of the parameter λ (see Section 4.10 for more details) which would need to 
be adjusted for each image separately to achieve optimal performance. 
Based on the presented results, we can find that pure photometric normalization 
techniques without any pre- or post-processing of facial images cannot ensure 
satisfactory recognition results on images captured in controlled as well as varying 
illumination conditions. To this end, we assess a number of options to further 
improve their performance in the next section. 
 

 5.4 Combining image enhancement and photometric normalization 
techniques 
Several empirical research studies have suggested that histogram equalization 
successfully improves the performance of a number of photometric normalization 
techniques. However, no specifics as to whether the histogram should be equalized 
before or after the actual deployment of the photometric normalization procedure 
were given, nor was a justification of why histogram equalization improves the 
performance of the photometric normalization techniques ever suggested.  
 
If we recall that the photometric normalization techniques perform a compression of 
the dynamic range of the intensity values of facial images and thus reduce the 
variability in the image, it becomes evident that histogram equalization applied after 
the photometric normalization increases the dynamic range of the normalized image 
by improving the image’s contrast and redistributing the pixel intensities equally 
across the whole 8-bit dynamic range. This procedure adds to images variability 
needed to successfully discriminate between different subjects. As histogram 
equalization is notorious for its background noise enhancing property, applying 
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histogram equalization prior to the photometric normalization would result in the 
retention (or worse - emphasis) of the background noise (which is a high frequency 
phenomenon) in the photometrically normalized images. Clearly, the right way to go 
is to use histogram equalization as a post-processing step for the photometric 
normalization, which is also consistent with the work presented in (Heusch et al., 
2005).  
Before we turn our attention to the experiments, let us examine the possibility of 
replacing the (post-processing) image enhancement technique HQ with HL, as 
proposed in Section 5.2. We have suggested that HQ improves upon the 
performance achieved with “pure” photometric normalization techniques because of 
its capability to increase the image’s dynamic range. For a technique to be suitable 
to take the place of HQ, it should exhibit similar characteristics as HQ. As we have 
shown during the introduction of the histogram remapping techniques, HL remaps 
the histogram of the input image to approximate the lognormal distribution with a 
selected mean and variance, thus increasing the dynamic range of the processed 
images to the full 8-bit interval. Furthermore, as it does not force the target 
distribution to be uniform, it does not increase the background noise. Without a 
doubt HQ and HL can both be adopted as post-processing techniques to photometric 
normalization. 
Using HQ and HL for post-processing, we perform two types of experiments. The 
results of these experiments are presented in Tables 5 and 6 for the YaleB database 
and Tables 7 and 8 for the XMVTS database.  
   

Sets SR MR SRA HO SQ DCT WA WD IS AN LTV 
S2 (120) 100 100 100 100 100 100 100 100 100 100 100 
S3 (120) 99.2 98.3 99.2 100 100 95.8 100 100 100 100 100 
S4 (140) 91.4 87.1 97.1 88.6 93.6 72.9 55.7 99.3 86.4 95.7 99.3 
S5 (190) 98.4 91.1 100 99.5 100 77.4 57.9 100 98.4 93.2 100 

Table 5: Rank one recognition rates on all image sets of the YaleB database using 
histogram equalization as the post-processing step to the normalization  

 
Sets SR MR SRA HO SQ DCT WA WD IS AN LTV 

S2 (120) 100 100 100 100 100 100 100 100 100 100 100 
S3 (120) 100 100 100 100 100 97.5 99.2 100 100 100 100 
S4 (140) 92.1 91.4 97.9 100 96.4 75.7 75.0 99.3 91.4 97.1 100 
S5 (190) 97.4 96.3 99.5 100 100 83.2 85.3 100 95.3 100 100 

Table 6: Rank one recognition rates on all image sets of the YaleB database using 
remapping of the histogram to a lognormal distribution as the post-processing step 

to the normalization  
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Sets 
Err.  
(%) 

SR MR SRA HO SQ DCT WA WD IS AN LTV 

ES 

FRR 9.2 9.0 7.0 13.2 8.2 8.2 8.00 17.3 12.3 12.5 12.2 

FAR 9.2 9.0 7.0 13.2 8.2 8.2 8.00 17.3 12.3 12.5 12.2 

HTER 9.2 9.0 7.0 13.2 8.2 8.2 8.00 17.3 12.3 12.5 12.2 

TS 

FRR 5.8 6.3 6.0 7.3 5.5 4.3 4.5 8.8 6.5 10.0 7.5 

FAR 8.9 8.9 7.0 13.3 8.4 8.4 8.3 17.0 12.2 12.4 11.8 

HTER 7.4 7.6 6.5 10.3 7.0 6.4 6.4 12.9 9.4 11.2 9.7 

Table 7: The verification performance on the XM2VTS database using histogram 
equalization as the post-processing step to the normalization 

 

Sets 
Err.  
(%) 

SR MR SRA HO SQ DCT WA WD IS AN LTV 

ES 

FRR 11.3 11.3 8.2 13.7 10.2 10.0 8.8 16.8 14.2 15.7 15.3 

FAR 11.3 11.3 8.2 13.7 10.2 10.0 8.8 16.8 14.2 15.7 15.3 

HTER 11.3 11.3 8.2 13.7 10.2 10.0 8.8 16.8 14.2 15.7 15.3 

TS 

FRR 6.5 6.8 6.8 9.8 6.0 6.8 6.5 10.3 8.3 11.0 8.8 

FAR 11.4 11.5 8.3 13.8 10.1 10.4 8.9 16.2 14.1 15.7 14.9 

HTER 9.0 9.2 7.6 11.8 8.1 8.6 7.7 13.3 11.2 13.4 11.9 

Table 8: The verification performance on the XM2VTS database remapping of the 
histogram to a lognormal distribution as the post-processing step to the 

normalization 
 

The presented results support our suggestion that the increase of the dynamic range 
of the processed images governs the improvements in the recognition rates, as both 
HQ and HL improve upon the vast majority of the results presented in Tables 3 and 4. 
Furthermore, we notice that HL ensures better performance than HQ on the YaleB 
database, while HQ outperforms HL on the XM2VTS database. While the relative 
ranking of the assessed techniques remained similar to the one presented in the 
previous series of face recognition experiments, the differences in the rank one 
recognition rates and half total error rates are smaller in absolute terms. This again 
suggests that decent performance gains can be achieved when photometric 
normalization techniques are combined with image enhancement approaches and, 
furthermore, that photometric normalization techniques need to be combined with 
image enhancement methods to ensure proper performance on both images 
captured in controlled as well as uncontrolled conditions.   
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6. Conclusion 
The chapter presented an overview of the most popular photometric normalization 
techniques used to achieve illumination invariance for robust face recognition. A 
number of techniques were presented and later on assessed on the YaleB and 
XM2VTS databases. The experimental results suggest that several photometric 
normalization techniques are capable of achieving state-of-the-art recognition 
results and that the performance of a vast majority of these techniques can be 
further improved when combined with image enhancement techniques, such as 
histogram equalization or histogram remapping.  
It has to be noted that many of the photometric normalization techniques result in 
an extreme compression of the dynamic range of the intensities values of images 
and that a small dynamic range usually implies that the photometric normalization 
procedure has removed most of the variability from the image, albeit induced by 
illumination or some other factor, and that the pixel intensity distribution thus 
exhibits a strong peak around a specific pixel value. In such cases, recognition 
algorithms cannot model the variations of faces due to intrinsic factors, such as facial 
expression or pose, even though shadows are removed perfectly (Park et al., 2008).  
Future research with respect to photometric normalization techniques will, 
therefore, undoubtedly focus on the development of pre-processing techniques 
capable of efficiently removing the influence of illumination changes present during 
image acquisition, while still preserving the image’s dynamic range. These 
techniques will be deployable on larger scale databases and will provide illumination 
invariance without the loss of subject specific information contained in the low-
frequency part of the images.    
To promote the future development of photometric normalization techniques we 
make most of the Matlab source code used in our experiments freely available. To 
obtain a copy of the code, the reader should follow the links given at: 
http://luks.fe.uni-lj.si/en/staff/vitomir/index.html. 
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