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Abstract—Many techniques in the area of 3D face recognition
rely on local descriptors to characterize the surface-shape infor-
mation around points of interest (or keypoints) in the 3D images.
Despite the fact that a lot of advancements have been made in the
area of keypoint descriptors over the last years, the literature on
3D-face recognition for the most part still focuses on established
descriptors, such as SIFT and SURF, and largely neglects more
recent descriptors, such as the FREAK descriptor. In this paper
we try to bridge this gap and assess the usefulness of the FREAK
descriptor for the task for 3D face recognition. Of particular
interest to us is a direct comparison of the FREAK and SIFT
descriptors within a simple verification framework. To evaluate
our framework with the two descriptors, we conduct 3D face
recognition experiments on the challenging FRGCv2 and UMB-
DB databases and show that the FREAK descriptor ensures a
very competitive verification performance when compared tothe
SIFT descriptor, but at a fraction of the computational cost. Our
results indicate that the FREAK descriptor is a viable alternative
to the SIFT descriptor for the problem of 3D face verification
and due to its binary nature is particularly useful for real- time-
recognition systems and verification techniques for low-resource
devices such as mobile phones, tablets and alike.

I. I NTRODUCTION

For many computer vision tasks using local image descrip-
tors has become the norm rather than an exception over the
last decades [1]. Image descriptors, such as the SIFT [2], the
SURF [3] or the HOG [4] descriptor, established themselves
as state-of-the-art tools for solving various vision-related prob-
lems ranging from object detection, recognition and tracking
to image stitching and retrieval.

Due to their popularity image descriptors have also found
their way into the area of 3D-face recognition, where they
were again shown to ensure state-of-the-art recognition results
(see e.g., [5], [6]). However, most of the available literature
on this topic focuses on established descriptors, such as the
SIFT or SURF, and largely neglects more recent descriptors,
such ORB [7], BRIEF [8] or FREAK [9], which unlike SIFT
or SURF are binary in nature and, therefore, computationally
much simpler. Whether this is a consequence of the superi-
ority of the SIFT and SURF descriptors when applied to a
recognition task or pertains to other factors remains an open
question.

In this paper we try to address this question and present
a comparative assessment of the SIFT and FREAK keypoint
descriptors when applied to the task of 3D face recognition.We

use the two descriptors within the 3D face recognition frame-
work originally presented in [10], and apply the framework to
images from the FRGCv2 [11] and UMB-DB [12] databases.
We assess the descriptors in terms of computational speed and
descriptiveness (reflected in the verification performance). The
results of our experiments suggest that the FREAK descriptor
represents an appealing alternative to the SIFT descriptorand
is capable of ensuring a competitive verification performance
at a fraction of SIFT’s computational cost.

The rest of the paper is structured as follows. In SectionsII
and III we briefly describe the theory underlying the SIFT
and the FREAK descriptors, respectively. In SectionIV we
introduce the 3D-face-recognition framework used in our ex-
periments and present the experimental results and our main
findings. We conclude the paper with some final comments
and directions for future work in SectionV.

II. SCALE INVARIANT FEATURE TRANSFORM (SIFT)

The Scale Invariant Feature Transform (SIFT), introduced
in [2], represents one of the most popular approaches to
keypoint detection and subsequent descriptor calculation. The
SIFT algorithm features four important steps:(i) scale-space
extrema detection,(ii) removal of unreliable keypoints,(iii)
orientation assignment, and(iv) keypoint descriptor calcula-
tion. In the remainder of this section we briefly describe all
the four steps.

A. Extrema detection

In the first step of the SIFT algorithm, interest points (or
keypoints) are identified in the given image by searching for
pixels that represent extrema of the Difference-of-Gaussian
(DoG) scale-space. Here, the DoG scale-space is defined as
a function D(x, y, σ) that is produced through convolution
of a variable-scale Difference-of-Gaussian filter and the input
image,I(x, y) [13], [2]:

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) (1)

with

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

, (2)

where σ denotes the standard deviation of the Gaussian
G(x, y, σ) and k stands for a scaling factor that controls the
Gaussian’s size.



Local maxima and minima ofD(x, y, σ) are identified by
comparing the given sample point with its eight neighbors as
well as the nine neighbors in the scale above and below. If the
point represents a local extreme, it is selected as a keypoint
candidate.

B. Removal of unreliable keypoints

Not all keypoints detected with the procedure described
above are actually used for keypoint descriptor calculation.
The final keypoints are selected based on different measures
of stability. During this step keypoints with low contrast and
keypoints with poorly determined locations along edges are
discarded.

Two criteria are used for the detection of the unreliable
keypoints. The first criterion evaluates the value of|D(x, y, σ)|
for each keypoint candidate. If the value is below some
threshold, the keypoint is removed, as this indicates that the
keypoint was detected in an image area of poor contrast. The
second criterion evaluates the ratio of the principal curvatures
across an edge and the principal curvature perpendicular to
this direction. Note that this is necessary as the DoG function
will have strong responses across edges regardless of whether
the keypoints at the edge responses are stable (i.e., they have
corner-like properties) or not. Thus, for unstable keypoints the
ratio will be large and vice versa, for stable keypoints the ratio
will be small. Consequently, all keypoints candidates withthe
ratio below some threshold are retained, otherwise they are
discarded.

C. Orientation assignment

In the third step of the SIFT algorithm an orientation is
assigned to each keypoint by building a histogram of gradi-
ent orientationsθ(x, y) weighted by the gradient magnitudes
m(x, y) from the key-point’s local neighborhood:

m(x, y) =
√

A(x, y)2 +B(x, y)2, (3)

θ(x, y) = tanh
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
, (4)

whereL(x, y) is a Gaussian smoothed image, where the scale
of the Gaussian is determined by the scale that closest to
the scale at which the keypoint was detected, andA(x, y) =
L(x+1, y)−L(x−1, y) andB(x, y) = L(x, y+1)−L(x, y−1).
By assigning a consistent orientation to each keypoint, thekey-
point descriptor can be represented relative to this orientation
and, therefore, can be made invariant to image rotation.

D. Keypoint descriptor calculation

Once the keypoint locations and orientation of each key-
point are determined, a descriptor can be computed for each of
the detected keypoints. This fourth step of the SIFT algorithm
calculates the SIFT descriptors by first computing the gradient
magnitude and orientation at each image point of the 16×16
keypoint neighborhood (Fig.1 - left). The keypoint neighbor-
hood is weighted with a Gaussian and then used to compute
orientation histograms of subregions of the neighborhood,each
subregion having a size of4× 4 pixels ( Fig.1 - right), with
the length of each arrow in Fig.1(right) corresponding to the

Fig. 1. In this figure the2 × 2 subregions are computed from an8 × 8

neighborhood, whereas in the experiments we use a16 × 16 neighborhood
and subregions of size4× 4 (image taken from [2]).

sum of the gradient magnitudes near that direction within the
region [2]. Each histogram typically features 8 bins making
the final keypoint descriptor comprising4 × 4 × 8 = 128
elements. The keypoint coordinates of the descriptor as well
as the gradient orientations are rotated relative to the keypoint
orientation to achieve orientation invariance and the descriptor
is ultimately normalized to enhance invariance to changes in
illumination [13], [2].

E. Matching

A procedure for matching the computed descriptors was
also presented in [2] together with the SIFT algorithm. Con-
sider a probe SIFT descriptor and some database of training
descriptors1. The matching procedure first looks among the
training descriptors for the the nearest neighbor of the probe
descriptor. Generally, many descriptors do not have a good
match among the training descriptors because they were either
computed from different image features (and objects) or they
arose from background clutter. To discard these descriptors
a threshold is used based on which matches that are too
ambiguous are discarded. The threshold is applied on the
ratio between the distance to the descriptors closest neighbor
and its second closest neighbor from the database of training
descriptors. If the ratio is below a predefined threshold value
the descriptors are declared a match.

III. FAST RETINA KEYPOINT (FREAK) DESCRIPTOR

The FREAK (Fast REtinA Keypoint) [9] descriptor is a
binary descriptor computed based on the results of brightness-
comparison tests in a number of sampling locations around a
keypoint. Unlike the SIFT algorithm, the FREAK approach
does not include a keypoint detectior step, but relies on
existing keypoint detectors - most often the AGAST corner
detector [14].

A. Sampling Pattern

The sampling pattern adopted by the FREAK approach is
biologically inspired by the retinal pattern in the eye. Thus, the
sample points that form the basis for calculating the FREAK
descriptor are arranged in the sample pattern shown in Fig2.

1Typically the probe descriptor represents one descriptor computed from
a probe image and the training descriptors represent all of the descriptors
extracted from some training (or gallery) image. The goal here is to compare
the probe and gallery images through descriptor comparisons.



Fig. 2. FREAK sampling pattern (image taken from [9]). Red circles
represents the standard deviations of the Gaussian kernelsapplied to the
corresponding sampling points. A total of 43 sampling points are selected
for the sampling pattern of the FREAK descriptor.

Before the descriptor is computed, theN sample points located
around the given keypoint are smoothed with a Gaussian
kernel. Here, the size of the kernel is varied with respect to
the location of the sampling point to simulate the behavior of
the human retina. In analogy to the human visual system, the
smoothed image areas around the sampling points are referred
to as receptive fields by the authors of [9]. The sampling points
of the FREAK descriptor, hence, represent the centers of the
receptive fields. Mathematically, this can be defined as follows:

Pi = P (xi, yi) = Lri(xi, yi), (5)

where
Lri(x, y) = I(x, y) ∗Gri(x, y, σri). (6)

In the above equationsI(x, y) stands for the input image,
Gri(x, y, σri) denotes the Gaussian kernel for thei-th re-
ceptive field (i = 1, 2, . . . , N ) and Lri(x, y) represents the
smoothed version of the input image. Thei-th sampling point
Pi corresponding to the center of thei-th receptive fieldri
and is defined with the predefined coordinates(xi, yi) from
the sampling pattern, wherei = 1, 2, . . . , N .

B. Building the Descriptor

As indicated in the beginning of this section, the FREAK
descriptor is constructed based on intensity comparisons be-
tween different pairs of smoothed sampling points (i.e., centers
of receptive fields). Formally, this can defined as follows.
Consider a pair of sampling pointsPa = (Pi, Pj), where
i, j ∈ {1, 2, . . . , N} and i 6= j. The FREAK approach defines
a binary encoded intensity comparisons(Pa) on this pair as

s(Pa) =

{

1, if Pi > Pj ,
0, otherwise,

(7)

The presented comparison forms the basis for building the
FREAK descriptorF as aN -dimensional bit string:

F =
∑

0≤a<N

2as(Pa). (8)

The FREAK sampling pattern enables many pair-wise
comparisons (binary tests) that would lead to a very large
descriptor. However, since many of the pairs might not be
useful for describing the content of an image, the authors of[9]
run a training algorithm with the sampling pattern presented in
Fig. 2 to identify useful pairs for building the descriptor. The
final (trained) form of the FREAK descriptor, thus, defines 512

Fig. 3. Illustration of the four binary tests clusters composing the FREAK
descriptor: peripheral receptive fields (top left), central (bottom right). The
images were taken from [9]

Fig. 4. Pairs selected to compute the keypoint orientation.The image was
taken from [9].

pairs from the sampling pairs that need to be tested in order
to compute the bit-string in Eq. (8).

Fig 3 shows the selected 512 sampling-point pairs grouped
into four clusters of 128 pairs. Due to the orientation of
the pattern along the global gradient, a symmetric pattern is
captured in the clusters.

C. Orientation normalization

The orientation of the FREAK descriptor is estimated
based on 45 selected sampling-point pairs that are arranged
symmetrically with respect to the center of the sampling
pattern (see Fig.4). Let G be the set of all the selected pairs
and assume that local gradients have been computed for all the
selected sampling points, then the orientationo of the given
keypoint can be computed as:

o =
1

M

∑

Pi,Pj∈G
i6=j

(Pi − Pj)
T (Pi)− T (Pj)

‖T (Pi)− T (Pj)‖
, (9)

whereM is the number of pairs inG and T (Pi) denotes a
function returning the 2D vector of the spatial coordinatesof
the center of receptive field, i.e., the vector of coordinates of
the k-th sampling pointT (Pk) = [xk, yk].

D. Descriptor matching

The procedure for matching FREAK descriptors imitates
the coarse-to-fine sacadic search of the human eye. Matching
starts by considering only the first 128 bits of the FREAK
descriptor carrying coarse information. If the computed Ham-
ming distance is smaller than a predefined threshold, the
matching proceeds by considering the remaining bits that
represent finer information. With this procedure, more than



Fig. 5. Sample data from: the UBM-DB database (top row), the FRGCv2
database (bottom row)

90% of the candidate matches are discarded with the first 128
bits of the FREAK descriptor, resulting in an extremely rapid
matching step.

IV. EXPERIMENTS

A. Experimental databases

To assess the relative usefulness of the SIFT and FREAK
descriptors for the task of 3D face recognition, we use two
publicly available databases of 3D facial images, i.e., the
FRGCv2 [11] and UMB-DB [12] databases. The FRGCv2
database serves for evaluating the recognition performance
ensured by the descriptors within our 3D face recognition
framework (presented in the next section) in the case of a
large number of subjects with near frontal orientations and
major expression variations. The UMB-DB databases is used to
examine the robustness of our framework to occlusions given
the two descriptors. Images from the two databases represent
challenging problems for the existing 3D face recognition
technology as evidenced by the sample images presented in
Fig. 5. Here, the upper row depicts sample images from the
FRGCv2 database and the lower row shows sample images
from the UMB-DB database.

During our experiments we focus on the performance
of our face recognition framework with respect to the two
descriptors and do not use the otherwise more commonly used
metrics for evaluation of detectors and descriptors (i.e. recall
and precision), as suggested in [15]. Our experimental results
are, therefore, mostly presented in the form of the verification
performance (or true accept rate - TAR) at the 0.1% false
accept rate (FAR) [16], [17], [18].

B. Experimental setup

For the experimental evaluation we use a similar recog-
nition framework as presented in [10]. A diagram of the
framework is presented in Fig.6.

The processing chain of our framework starts by low-pass
filtering the 3D scans to remove high frequency noise. The
depth components (z values) are then interpolated and uni-
formly re-sampled on the(x, y) plane. After the re-sampling,
face localization is performed with a technique relying on
k-means clustering (similar to the one presented in [19]).
With this technique, the facial area is extracted from the 3D

Fig. 7. Effect of data representation on the number of detected SIFT keypoints
(with default parameters). From left to right: grayscale image, depth image,
maximum curvature, mean curvature,z components of the surface normals,
shape index (best viewed in color).

scans by clustering the depth data into 3 distinct clusters that
commonly correspond to the background, body parts and the
face/head region. The cluster with the lowest average depth
value typically corresponds to the facial area and is, therefore,
retained for further processing. Note that the employed face
localization procedure assures only a very rough localization
of the facial region. However, it is computationally extremely
simple and is able to localize the face even in the presence of
severe occlusions, rotations and expression variations, where
other localization techniques frequently fail [10].

As the keypoint-descriptor-calculation methods are opti-
mized for 2D images, it is of major importance in what
form the 3D data is passed to the keypoint-detection and
the descriptor-calculation procedure. With an unappropriate
representation of the depth data, the keypoint detector will
be unable to find a sufficient number of keypoints for the
recognition procedure to work. Thus, the depth images need to
be represented in a reasonable form for our assessment to make
sense. Towards this end, we consider different representations
of the surface shape to represent our depth data. Specifically,
we use pure depth imagesIr, shape index valuesIs, mean
curvature valuesIm, maximum curvature valuesImax and
surface normal coordinatesInx, Iny andInz (see Fig.7). An
illustrative example of the effect of different representations
on the keypoint detection step of the SIFT algorithm is shown
in Fig. 7.

The keypoint-detection and descriptor-calculation stepsof
our framework, are implemented with the SIFT and the
FREAK approaches. With the SIFT descriptor, the SIFT
keypoint-detection procedure is used, while for the FREAK
descriptor AGAST keypoint detector is adopted.

The final step in the processing chain of our framework is
the matching stage. In this stage a similarity score (or matching
score) measuring the similarity between the given probe and
target images needs to be computed. Towards this end, each de-
scriptor from the given probe image is matched independently
against all descriptors extracted from the given target image.
For the descriptor-matching procedure the technique proposed
for the SIFT descriptor is used. Recall from SectionII-E
that the technique relies on the ratio between the distance
to the nearest end second nearest neighbor [2], [15] - we
will refer to this matching procedure as the “nearest-neighbor-
ratio” matching in the reminder of the paper. Eventually, the
number of matching descriptors between the two images serves
as similarity measure for the given pair of probe and target
images2.

2Note that matching of the binary descriptors is performed using the
Hamming distance (bitwise XOR followed by a bit count), which can be
computed very efficiently on today architectures [20].



Fig. 6. Conceptual diagram of the 3D face recognition framework used in the experiments. During all of our experiments all steps were kept the same, except
for the keypoint-descriptor-calculation step, which in one case was implemented with the SIFT algorithm and in the second with the FREAK approach.

TABLE I. I NFLUENCE OF DIFFERENT3D DATA REPRESENTATION

TECHNIQUES ON THE KEYPOINT-DETECTION STEP AND THE VERIFICATION

PERFORMANCE(TAR @ 0.1% FAR, FRGCV2, neut. vs neut.; ALL
DESCRIPTORS ARE EXTRACTED ON THE SHAPE INDEX REPRESENTATION)

Data representation for the keypoint detection

Method Ir Inz Imax Is Im

SIFT 21.5 (6)∗ 90.0 (72) 82.2 (62) 94.3 (396) 81.6 (81)

FREAK 2.4 (3) 92.5 (162) 78.1 (134) 92.4 (349) 76.8 (138)

∗ numbers in brackets denote the average number of detected keypoints per one 3D
face image

C. Results

In the first series of our experiments we try to evaluate the
impact of the selected 3D-surface-shape representation onthe
keypoint-detection and descriptor-calculation steps, and con-
sequently on the recognition performance of our framework.
For this series of experiments we use the FRGCv2 database
and compute our performance metrics only on 3D facial
images marked as neutral in the database. The experiments are
conducted in aall-vs-all manner, thus, each image from the
“neutral” subset of the FRGCv2 database is matched against all
remaining images in this subset. Due to the selected setup the
same images appear as probes and targets, which is common
with this database [11], [10].

Table I presents the results of the first experimental run,
where the keypoint-detection step is conducted on differ-
ent 3D-shape-surface representations and the descriptorsare
computed from the shape-index representationIs

3. Note that
the best performance (considering both descriptor types) is
achieved when both the keypoint-detection and descriptor cal-
culation steps are conducted on the shape-index representation.
We argue that this is due to an increased variability in the
shape-index representation compared, for example, to the pure
depth images, resulting in much more detected keypoints and
thus better description of the face.

In the second experimental run of this series of experi-
ments we conduct a similar experiment as in the first run,
but this time use the shape-index representation to find the
keypoints for the two descriptors and calculates the actual

3We have also experimented with settings, where the keypoint-detection and
descriptor calculation steps were conducted on the same representation, but
do not show the results here, as the performance was significantly worse than
that tabulated in TablesI and II .

TABLE II. I NFLUENCE OF DIFFERENT3D DATA REPRESENTATION

TECHNIQUES ON THE DESCRIPTOR-CALCULATION STEP AND THE

VERIFICATION PERFORMANCE(TAR @ 0.1% FAR, FRGCV2, neut. vs
neut.; ALL KEYPOINTS ARE DETECTED ON THE SHAPE INDEX

REPRESENTATION)

Data representation for the descriptor extraction

Method Ir Inz Is

SIFT 12.6 79.3 94.3

FREAK 72.8 85.6 92.4

descriptors on different data representations. In TableII we
present the results for the three top performing representations,
all other representations were omitted from the table, as their
performance was significantly worse from what is presented.
Similar to the results in TableI the shape index is again the
best representation, which can be explained by the increased
robustness of the descriptors, resulting from the invariance of
the shape index to scale, translation and rotation [21]. Based
on the results of this series of experiments we select the shape-
index representation for all our subsequent experiments.

In the second series of experiments we evaluate the ro-
bustness of the keypoint descriptors (within our framework)
to variations in the facial expressions and presence to partial
occlusions of the facial area. For this series of experiments
we use both the FRGCv2 and UMB-DB databases. For the
FRGCv2 database we match all images marked as neutral
to all image marked as non-neutral. For the UMB-DB we
match all non-occluded images against all occluded images.
The results of the experiments are presented in TableIII . The
SIFT-based framework outperforms the FREAK-based one,
but the differences in the performance is only around 3%
on both databases. Furthermore, the SIFT-based framework is
computationally much more expensive as shown in the graphs
in Fig. 8, where the average time needed by our framework
to process a single image (given a specific descriptor) is
presented. Here, it has to be noted that our experiments were
performed on a Intel Xeon CPU @ 2.67 GHz personal desktop
computer with 12 GB of RAM. The implementation of the
keypoint detectors and descriptor computation proceduresis
taken from OpenCV [22] and assessed through Matlab4. As
can be seen from Fig.8, the keypoint detection and descriptor
calculation times for the FREAK-based framework are much
lower than those of the SIFT descriptor.

4http://www.cs.stonybrook.edu/∼kyamagu/mexopencv/

http://www.cs.stonybrook.edu/~kyamagu/mexopencv/


TABLE III. TAR (%) AT A 0.1% FAROF THE ASSESSED METHODS IN

THE PRESENCE OF EXPRESSION, OCCLUSION AND ORIENTATION

VARIATIONS .

Matching/classification
Data set Descriptor

Name Target Query SIFT FREAK

nearest-neighbor-ratio
FRGC neutral non-neut. 81.2 77.8
UMB-DB non-occl. occluded 78.2 75.0

0 0.05 0.1 0.15 0.2 0.25

FREAK (348)

SIFT (404)

Time in seconds

Keypoint detection Descriptor calculation Classification

Fig. 8. Average times needed by different computational steps of the
descriptors within our framework for the verification of oneface image
(numbers in brackets denote the number of detected keypoints).

All in all, the results of our experiments suggest that the
FREAK descriptor represents a viable alternative to the SIFT
descriptor for the task of 3D face recognition. Even with our
simple recognition framework, both descriptors ensured high
verification performance; in the case of the UMB-DB even
comparable to the state-of-the-art (see, e.g., [23], [24]). When
looking at the speed of computation, the FREAK descriptor
definitely has an advantage compared to the SIFT descriptor
and is also well suited for building recognition systems for
low-resource devices such as mobile phones, tablets and alike.

V. CONCLUSION

We have assessed the relative usefulness of two keypoint
descriptors, i.e., the SIFT and the FREAK descriptors, for the
task of 3D face recognition. We have shown that despite its
binary nature the FREAK descriptor is powerful enough to be
used in 3D face recognition systems, where it ensures a recog-
nition performance comparable to the SIFT descriptor, but at
a fraction of the computational cost. For our future work, we
plan to incorporate the FREAK descriptor into more elaborate
recognition schemes, as the results of our experiments suggest
that this represents a promising new research direction.
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tions using Region Covariance Descriptors and StatisticalModels,” in
FG Workshop, 2013, pp. 1–7.1, 4, 5

[11] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the
FRGC,” in CVPR, 2005, pp. 947–954.1, 4, 5

[12] A. Colombo, C. Cusano, and R. Schettini, “UMB-DB: A database of
partially occluded 3D faces,” inICCV W., 2011, pp. 2113–2119.1, 4
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