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Abstract—Many techniques in the area of 3D face recognition
rely on local descriptors to characterize the surface-shagp infor-
mation around points of interest (or keypoints) in the 3D images.
Despite the fact that a lot of advancements have been made ihe
area of keypoint descriptors over the last years, the literure on
3D-face recognition for the most part still focuses on estdlshed
descriptors, such as SIFT and SURF, and largely neglects mer
recent descriptors, such as the FREAK descriptor. In this paer
we try to bridge this gap and assess the usefulness of the FREA
descriptor for the task for 3D face recognition. Of particular
interest to us is a direct comparison of the FREAK and SIFT
descriptors within a simple verification framework. To evaluate
our framework with the two descriptors, we conduct 3D face
recognition experiments on the challenging FRGCv2 and UMB-

DB databases and show that the FREAK descriptor ensures a

very competitive verification performance when compared tothe
SIFT descriptor, but at a fraction of the computational cost Our
results indicate that the FREAK descriptor is a viable altemative
to the SIFT descriptor for the problem of 3D face verification
and due to its binary nature is particularly useful for real-time-
recognition systems and verification techniques for low-reource
devices such as mobile phones, tablets and alike.

I. INTRODUCTION

For many computer vision tasks using local image descrip
tors has become the norm rather than an exception over tr}ﬁ

last decadesl]. Image descriptors, such as the SIET, the

SURF [3] or the HOG [] descriptor, established themselves

as state-of-the-art tools for solving various vision-tethprob-

lems ranging from object detection, recognition and tragki

to image stitching and retrieval.

Due to their popularity image descriptors have also found
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use the two descriptors within the 3D face recognition frame
work originally presented in1[0], and apply the framework to
images from the FRGCv2L[] and UMB-DB [17] databases.
We assess the descriptors in terms of computational spekd an
descriptiveness (reflected in the verification performantiee
results of our experiments suggest that the FREAK descripto
represents an appealing alternative to the SIFT descriptdr

is capable of ensuring a competitive verification perforoan
at a fraction of SIFT’s computational cost.

The rest of the paper is structured as follows. In Sectibns
and Ill we briefly describe the theory underlying the SIFT
and the FREAK descriptors, respectively. In Sectidh we
introduce the 3D-face-recognition framework used in ow ex
periments and present the experimental results and our main
findings. We conclude the paper with some final comments
and directions for future work in Sectiow.

1. SCALE INVARIANT FEATURE TRANSFORM (SIFT)

The Scale Invariant Feature Transform (SIFT), introduced
in [2], represents one of the most popular approaches to
keypoint detection and subsequent descriptor calculafibe
SIFT algorithm features four important stef{s: scale-space
extrema detection(ii) removal of unreliable keypointgjii)
ientation assignment, an@y) keypoint descriptor calcula-
tion. In the remainder of this section we briefly describe all
the four steps.

A. Extrema detection

In the first step of the SIFT algorithm, interest points (or

their way into the area of 3D-face recognition, where theykeypoints) are identified in the given image by searching for

were again shown to ensure state-of-the-art recognitisuitee ~ pixels that represent extrema of the Difference-of-Gaumssi
(see e.g.,ql, [6]). However, most of the available literature (DOG) scale-space. Here, the DoG scale-space is defined as
on this topic focuses on established descriptors, suchas i function D(z,y, o) that is produced through convolution
SIFT or SURF, and largely neglects more recent descriptor®f a variable-scale Difference-of-Gaussian filter and thut

such ORB [], BRIEF [9] or FREAK [9], which unlike SIFT  image,I(z,y) [17], []:

or SURF are binary in nature and, therefore, computatignall
much simpler. Whether this is a consequence of the superi- D(z,y,0) = (G(z,y, ko) = G(z,y,0)) * I(z.y) (1)
ority of the SIFT and SURF descriptors when applied to ai,

recognition task or pertains to other factors remains amope 1

(22402 /202
question. G(z,y,0) e~ (@ Hv/20, (2)

T 2702

In this paper we try to address this question and presemhere o denotes the standard deviation of the Gaussian
a comparative assessment of the SIFT and FREAK keypoint(z, y, o) and k stands for a scaling factor that controls the
descriptors when applied to the task of 3D face recognitidm. Gaussian’s size.



Local maxima and minima oD(z,y, o) are identified by —

comparing the given sample point with its eight neighbors as Pt M EHE
well as the nine neighbors in the scale above and below. If the /- ey *E
point represents a local extreme, it is selected as a kelypoin R

candidate. F=) —
’: AN e z |
B. Removal of unreliable keypoints N e 7L< >§

Not all keypoints detected with the procedure described
above are actually used for keypoint descriptor calcutatio o .
The final keypoints are selected based on different measuré&®. 1. In this figure the2 x 2 subregions are computed from &nx 8
of stability During this step keypoints with low contrastca neighborhood, whereas in the experiments we udé & 16 neighborhood

- . . . and subregions of sizé x 4 (image taken from]).
keypoints with poorly determined locations along edges are

discarded.

Two criteria are used for the detection of the unreliableSum of the gradient magnitudes near that direction withén th
keypoints. The first criterion evaluates the valué®fz,y,o)|  'egion []. Each histogram typically features 8 bins making
for each keypoint candidate. If the value is below somethe final keypoint descriptor comprising x 4 x 8 = 128
threshold, the keypoint is removed, as this indicates that t elements. The keypoint coordinates of the descriptor as wel
keypoint was detected in an image area of poor contrast. THeS the gradient orientations are rotated relative to th@diey
second criterion evaluates the ratio of the principal cumess ~ Orientation to achieve orientation invariance and the digisr
across an edge and the principal curvature perpendicular 18 uIt_lma_ter normalized to enhance invariance to changes i
this direction. Note that this is necessary as the DoG foncti ilumination [13], [2].
will have strong responses across edges regardless of evheth
the keypoints at the edge responses are stable (i.e., tivey haE. Matching

corner-like properties) or not. Thus, for unstable keypmthe A procedure for matching the computed descriptors was
ratio will be large and vice versa, for stable keypoints tBor also presented in] together with the SIFT algorithm. Con-

W'I! b% slmall. Consehquerr]\tl?g all keypo_lntz can€|da§es Wﬂm sider a probe SIFT descriptor and some database of training
(rj?ggar deegw some threshold are retained, otherwise they ar8esc:riptor§. The matching procedure first looks among the
' training descriptors for the the nearest neighbor of théb@ro
_ _ ) descriptor. Generally, many descriptors do not have a good
C. Orientation assignment match among the training descriptors because they werereith

In the third step of the SIFT algorithm an orientation is COMPuted from different image features (and objects) oy the
assigned to each keypoint by building a histogram of gradi_arose from packground clutter. To _d|scard these descsptor
ent orientations(z, ) weighted by the gradient magnitudes a threshold is used based on which matches that are too

m(z,y) from the key-point’s local neighborhood: ambiguous are discarded. The threshold is applied on the
’ ' ratio between the distance to the descriptors closest heigh

m(z,y) = VA(z,y)?+ B(z,y)?, (3) and its second closest neighbor from the database of tgainin
descriptors. If the ratio is below a predefined thresholdi@al
the descriptors are declared a match.

Image gradients Keypoint descriptor

1) — _
9(£E,y):tanh§(x’y+) Ley 1)

; 4)

(z+1,y) = L(z = L,y) [Il. FAST RETINA KEYPOINT (FREAK) DESCRIPTOR

whereL(z,y) is a Gaussian smoothed image, where the scale

of the Gaussian is determined by the scale that closest to

the scale at which the keypoint was detected, ard, y) = The FREAK (Fast REtinA Keypoint)9] descriptor is a

L(z+1,y)—L(z—1,y) andB(z,y) = L(z,y+1)—L(x,y—1).  binary descriptor computed based on the results of brigistne

By assigning a consistent orientation to each keypointkéye  comparison tests in a number of sampling locations around a

point descriptor can be represented relative to this cateoxt ~ keypoint. Unlike the SIFT algorithm, the FREAK approach

and, therefore, can be made invariant to image rotation. ~ does not include a keypoint detectior step, but relies on
existing keypoint detectors - most often the AGAST corner

D. Keypoint descriptor calculation detector [1].

‘Once the keypoint locations and orientation of each keya, sampling Pattern

point are determined, a descriptor can be computed for efach o ) i

the detected keypoints. This fourth step of the SIFT alporit  The sampling pattern adopted by the FREAK approach is

calculates the SIFT descriptors by first computing the graidi  biologically inspired by the retinal pattern in the eye. $hthe

magnitude and orientation at each image point of the® Sample points that form the basis for calculating the FREAK

keypoint neighborhood (FigL - left). The keypoint neighbor- descriptor are arranged in the sample pattern shown ir2Fig

hood is weighted with a Gaussian and then used to compute

; ; : : - ClTypicaIIy the probe descriptor represents one descriptonputed from
orientation histograms of subregions of the neighborheadh a probe image and the training descriptors represent alhefdescriptors

subregion having a size @fx 4 pixels (Fig.1 - right), with extracted from some training (or gallery) image. The goakhs to compare
the length of each arrow in Fid(right) corresponding to the the probe and gallery images through descriptor compagison




Fig. 2. FREAK sampling pattern (image taken frorf])[ Red circles
represents the standard deviations of the Gaussian keapglied to the
corresponding sampling points. A total of 43 sampling poiate selected

for the sampling pattern of the FREAK descriptor. Fig. 3. lllustration of the four binary tests clusters cormsipg the FREAK

descriptor: peripheral receptive fields (top left), ceintlzottom right). The
images were taken fron®]

Before the descriptor is computed, tivesample points located
around the given keypoint are smoothed with a Gaussian
kernel. Here, the size of the kernel is varied with respect to
the location of the sampling point to simulate the behavior o
the human retina. In analogy to the human visual system, the
smoothed image areas around the sampling points are méferre
to as receptive fields by the authors 8f.[The sampling points

of the FREAK descriptor, hence, represent the centers of the
receptive fields. Mathematically, this can be defined agWst

Fig. 4. Pairs selected to compute the keypoint orientafidre image was
P = P(zi,yi) = Ly, (i, y1), (5)  taken from E].

where

L, (x,y) = I(z,y) * Gy, (2, y,0r,). (6)  pairs from the sampling pairs that need to be tested in order

. ) ) to compute the bit-string in Eq8J.

In the above equation$(x,y) stands for the input image, ) ) _ _
G..(z,y,0,,) denotes the Gaussian kernel for tieh re-  Fig 3 shows the selected 512 sampling-point pairs grouped
ceptive field { = 1,2,...,N) and L, (z,y) represents the into four clusters of 128 pairs. Due to the orientation of
smoothed version of the input image. Thth sampling point the pattern along the global gradient, a symmetric pattern i
P; corresponding to the center of theh receptive fieldr; ~ captured in the clusters.
and is defined with the predefined coordinates, y;) from

the sampling pattern, where=1,2,..., N. C. Orientation normalization

The orientation of the FREAK descriptor is estimated
based on 45 selected sampling-point pairs that are arranged
As indicated in the beginning of this section, the FREAK symmetrically with respect to the center of the sampling

descriptor is constructed based on intensity comparisens bpattern (see Figd). Let G be the set of all the selected pairs
tween different pairs of smoothed sampling points (i.entees  and assume that local gradients have been computed foeall th
of receptive fields). Formally, this can defined as follows.selected sampling points, then the orientationf the given
Consider a pair of sampling point8, = (P;, P;), where keypoint can be computed as:
1,7 €41,2,...,N} andi # j. The FREAK approach defines

B. Building the Descriptor

! intens i is pai ! I(P,) - T(P))
a binary encoded intensity comparisef,) on this pair as 0= — Z (P, — P)) i) ©)
1, if P> P M pire IT(P) —T(F))l
— ! 7 1 it
s(Fa) {O, otherwise, (7)

where M is the number of pairs i? and T'(P;) denotes a
The presented comparison forms the basis for building théunction returning the 2D vector of the spatial coordinatés
FREAK descriptorF' as aN-dimensional bit string: the center of receptive field, i.e., the vector of coordisaie

the k-th sampling pointl’(Py) = [z, yi].
F= 3 205(P). pling pointl’(P) = [2k, yk]

Osa<h D. Descriptor matching

The FREAK sampling pattern enables many pair-wise The procedure for matching FREAK descriptors imitates
comparisons (binary tests) that would lead to a very largehe coarse-to-fine sacadic search of the human eye. Matching
descriptor. However, since many of the pairs might not bestarts by considering only the first 128 bits of the FREAK
useful for describing the content of an image, the authofS]jof descriptor carrying coarse information. If the computedrHa
run a training algorithm with the sampling pattern presdite  ming distance is smaller than a predefined threshold, the
Fig. 2 to identify useful pairs for building the descriptor. The matching proceeds by considering the remaining bits that
final (trained) form of the FREAK descriptor, thus, define251 represent finer information. With this procedure, more than



Fig. 7. Effect of data representation on the number of deteSIFT keypoints
(with default parameters). From left to right: grayscaleage, depth image,
maximum curvature, mean curvature,components of the surface normals,
shape index (best viewed in color).

Fig. 5. Sample data from: the UBM-DB database (top row), tRSEv2  scans by clustering the depth data into 3 distinct clusteas t
database (bottom row) commonly correspond to the background, body parts and the
face/head region. The cluster with the lowest average depth

90% of the candidate matches are discarded with the first 12¢alue typically corresponds to the facial area and is, foeee
bits of the FREAK descriptor, resulting in an extremely chpi 'etained for further processing. Note that the employee fac
matching step. localization procedure assures only a very rough locatinat

of the facial region. However, it is computationally extregn
simple and is able to localize the face even in the presence of
severe occlusions, rotations and expression variatiohsrav
other localization techniques frequently fail(].

IV. EXPERIMENTS

) As the keypoint-descriptor-calculation methods are opti-
A. Experimental databases mized for 2D images, it is of major importance in what

To assess the relative usefulness of the SIFT and FREAfOrm the 3D data is passed to the keypoint-detection and
descriptors for the task of 3D face recognition, we use twdhe descriptor-calculation procedure. With an unappederi
publicly available databases of 3D facial images, i.e., thdepresentation of the depth data, the keypoint detectdr wil
FRGCv2 [.1] and UMB-DB [17] databases. The FRGCv2 be unaple to find a sufficient number of keypomts for the
database serves for evaluating the recognition performand€cognition procedure to work. Thus, the depth images need t
ensured by the descriptors within our 3D face recognitiorP€ represented in a reasonable form for our assessment & mak
framework (presented in the next section) in the case of §&nse. Towards this end, we consider different represensat
large number of subjects with near frontal orientations anc®f the surface shape to represent our depth data. Spegificall
major expression variations. The UMB-DB databases is used tVe use pure depth imagds, shape index value;, mean
examine the robustness of our framework to occlusions givefurvature valued,,, maximum curvature values,,,, and
the two descriptors. Images from the two databases reqiresefi/fface normal coordinatds,, I,, andL,. (see Fig.7). An
challenging problems for the existing 3D face recognition'"UStrat'Ve ex_ample of_ the effect of different represeiotas
technology as evidenced by the sample images presented @ the keypoint detection step of the SIFT algorithm is shown
Fig. 5. Here, the upper row depicts sample images from thd" Fig. 7.

FRGCv2 database and the lower row shows sample images The keypoint-detection and descriptor-calculation stefps
from the UMB-DB database. our framework, are implemented with the SIFT and the

During our experiments we focus on the performancd REAK approaches. With the SIFT descriptor, the SIFT
of our face recognition framework with respect to the two KeyPoint-detection procedure is used, while for the FREAK
descriptors and do not use the otherwise more commonly usélfSCriptor AGAST keypoint detector is adopted.
metrics for evaluation of detectors and descriptors (eeal The final step in the processing chain of our framework is
and precision), as suggested irc]. Our experimental results  the matching stage. In this stage a similarity score (or hiatc
are, therefore, mostly presented in the form of the verificat score) measuring the similarity between the given probe and
performance (or true accept rate - TAR) at the 0.1% falseargetimages needs to be computed. Towards this end, each de

accept rate (FAR)I[€], [17], [14]. scriptor from the given probe image is matched indepengentl
against all descriptors extracted from the given targetgena
B. Experimental setup For the descriptor-matching procedure the technique ps@go

) ) o for the SIFT descriptor is used. Recall from SectibrE
__For the experimental evaluation we use a similar recognat the technique relies on the ratio between the distance
nition framework as presented (. A diagram of the {5 the nearest end second nearest neighbbr [[L5] - we
framework is presented in Fig- will refer to this matching procedure as the “nearest-nieigh
The processing chain of our framework starts by low-pas§tio” maiching in the reminder of the paper. Eventuallg th
filtering the 3D scans to remove high frequency noise. Th&Umber of matching descriptors between the two images serve
depth componentsz(values) are then interpolated and uni- @S similarity measure for the given pair of probe and target
formly re-sampled on théz, %) plane. After the re-sampling, images.
face localization is performed with a technique relying on 2Note that matching of the binary descriptors is performeihgighe

k-mean_s ClUSte_ring (Sim“ar_ to the one presented JA])[ Hamming distance (bitwise XOR followed by a bit count), whican be
With this technique, the facial area is extracted from the 3Dcomputed very efficiently on today architectures][
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Fig. 6. Conceptual diagram of the 3D face recognition fraorévused in the experiments. During all of our experimenksteps were kept the same, except
for the keypoint-descriptor-calculation step, which irearase was implemented with the SIFT algorithm and in therskedth the FREAK approach.

TABLE I. INFLUENCE OF DIFFERENT3D DATA REPRESENTATION TABLE II. | NFLUENCE OF DIFFERENT3D DATA REPRESENTATION
TECHNIQUES ON THE KEYPOINFDETECTION STEP AND THE VERIFICATION TECHNIQUES ON THE DESCRIPTORCALCULATION STEP AND THE
PERFORMANCE(TAR @ 0.1% FAR, FRG(G/2, neut. vs neut.; ALL VERIFICATION PERFORMANCE(TAR @ 0.1% FAR, FRGG/2, neut. vs
DESCRIPTORS ARE EXTRACTED ON THE SHAPE INDEX REPRESENTATN neut.; ALL KEYPOINTS ARE DETECTED ON THE SHAPE INDEX

REPRESENTATION

Data representation for the keypoint detection

Data representation for the descriptor extraction

Method 1. I.. Lax 1, j
Method 1. 1,.. I,

SIFT 215 (6  90.0 (72) 82.2 (62) 94.3(396)  81.6 (81)

FREAK 2.4 (3) 92.5(162)  78.1(134)  92.4 (349)  76.8 (138) SIFT 12.6 79.3 94.3
FREAK 72.8 85.6 92.4

* numbers in brackets denote the average number of detecypdikes per one 3D
face image

descriptors on different data representations. In Tablee
C. Results present the results for the three top performing repretenta
all other representations were omitted from the table, asg th
eperformance was significantly worse from what is presented.
Similar to the results in Tablé the shape index is again the
best representation, which can be explained by the inadease

In the first series of our experiments we try to evaluate th
impact of the selected 3D-surface-shape representatidgheon
keypoint-detection and descriptor-calculation steps] eon-

sequently on the recognition performance of our frameworkpqp, sness of the descriptors, resulting from the invaeaof

For this series of experiments we use the FRGCv2 databagfie shape index to scale, translation and rotatiof. [Based

and compute our performance metrics only on 3D facial,, e results of this series of experiments we select theesha
images marked as neutral in the database. The experiments

) . Fhdex representation for all our subsequent experiments.
conducted in all-vs-all manner, thus, each image from the P d P

“neutral” subset of the FRGCv2 database is matched agdinsta In the second series of experiments we evaluate the ro-
remaining images in this subset. Due to the selected setup tipustness of the keypoint descriptors (within our framework
same images appear as probes and targets, which is commignvariations in the facial expressions and presence tdapart
with this databasel[l], [10]. occlusions of the facial area. For this series of experisment
i i we use both the FRGCv2 and UMB-DB databases. For the

Table | presents the results of the first experimental rungrGcy2 database we match all images marked as neutral
where the keypoint-detection step is conducted on differyy g image marked as non-neutral. For the UMB-DB we
ent 3D-shape-surface representations and the descrigters match all non-occluded images against all occluded images.
computed from the shape-index representaligh Note that  The results of the experiments are presented in Tahl&he
the best performance (considering both descriptor types) iS|FT-pased framework outperforms the FREAK-based one,
achieved when both the keypoint-detection and descrifgtbr ¢ pyt the differences in the performance is only around 3%
culation steps are conducted on the shape-index représenta o poth databases. Furthermore, the SIFT-based framework i
We argue that this is due to an increased variability in thecomputationally much more expensive as shown in the graphs
shape-index representation compared, for example, toute p n Fig. 8, where the average time needed by our framework
depth images, re;u!tlng in much more detected keypoints ang process a single image (given a specific descriptor) is
thus better description of the face. presented. Here, it has to be noted that our experiments were

In the second experimental run of this series of experiP€rformed on a Intel Xeon CPU @ 2.67 GHz personal desktop
ments we conduct a similar experiment as in the first runComMpuUter with 12 GB of RAM. The implementation of the

but this time use the shape-index representation to find thieypoint detectors and descriptor computation procedisres

keypoints for the two descriptors and calculates the actudfken from OpenCV 17 and assessed through Matfalis
can be seen from Fi@, the keypoint detection and descriptor

3We have also experimented with settings, where the keyjleitetiction and calculation times for the FREAK-based framework are much

descriptor calculation steps were conducted on the samesemation, but  lower than those of the SIFT descriptor.
do not show the results here, as the performance was significsorse than
that tabulated in Tablesandll. 4http://www.cs.stonybrook.edukyamagu/mexopencv/



http://www.cs.stonybrook.edu/~kyamagu/mexopencv/

TABLE Il TAR (%) AT A 0.1% FAROF THE ASSESSED METHODS IN 3
THE PRESENCE OF EXPRESSIQMCCLUSION AND ORIENTATION (3]
VARIATIONS.

Matching/classification Data set Descriptor

Name Target Query SIFT FREAK  [4]
t-neiahb ti FRGC neutral non-neut. 81.2 77.8
nearestneighbor-ratio ;s g nonocel.  occluded  78.2  75.0 (5]
SIFT (404) | (6]
FREAK (348) |}
| | | | |
0 0.05 0.1 0.15 0.2 0.25 7]
Time in seconds

I Keypoint detectior Descriptor calculatiojmml Classification (8]

Fig. 8. Average times needed by different computationapsstef the
descriptors within our framework for the verification of ofi@ce image
(numbers in brackets denote the number of detected kegpoint

9]

All in all, the results of our experiments suggest that the
FREAK descriptor represents a viable alternative to theTSIF
descriptor for the task of 3D face recognition. Even with our
simple recognition framework, both descriptors ensureghhi (17
verification performance; in the case of the UMB-DB even
comparable to the state-of-the-art (see, e4y,[[24]). When
looking at the speed of computation, the FREAK descriptoi12]
definitely has an advantage compared to the SIFT descriptor
and is also well suited for building recognition systems for[13]
low-resource devices such as mobile phones, tablets el ali

[10]

V. CONCLUSION [14]

We have assessed the relative usefulness of two keypoiﬁts]
descriptors, i.e., the SIFT and the FREAK descriptors, fier t
task of 3D face recognition. We have shown that despite its
binary nature the FREAK descriptor is powerful enough to bgzg)
used in 3D face recognition systems, where it ensures a+ecog
nition performance comparable to the SIFT descriptor, but a
a fraction of the computational cost. For our future work, we[17]
plan to incorporate the FREAK descriptor into more elalbmrat
recognition schemes, as the results of our experimentsestigg
that this represents a promising new research direction. (18]
ACKNOWLEDGMENT

The work presented in this paper was supported in partglgl
by the national research program P2-0250(C) Metrology and
Biometric Systems, the European Union’s Seventh Frameworjo]
Programme (FP7-SEC-2011.20.6) under grant agreement num-
ber 285582 (RESPECT) and the post-doctoral project 3D-For21]
REAL (3D Face recognition in real world setting) funded
partially by MIZS and the European Social Fund, M-1331E[22]
(HO019001). The authors additionally appreciate the sutpgior
COST Actions 1C1106 and IC1206. (23]

REFERENCES
[1] H. Galoogahi, T. Sim, and S. Lucey, “Multi-Channel Cdateon
Filters,” in IEEE ICCV, 2013. 1

[2] D. G. Lowe, “Distinctive Image Features from Scale-Ineat Key-
points,” 1JCV, vol. 60, no. 2, pp. 91-110, 2004, 2, 4

[24]

H. Bay, T. Tuytelaars, and L. Gool, “SURF: Speeded Up Rabbu
Features,” inECCV, ser. LNCS, A. Leonardis, H. Bischof, and A. Pinz,
Eds. Springer Berlin Heidelberg, 2006, vol. 3951, pp. 4044
[Online]. Available: http://dx.doi.org/10.1007/117440232 1

N. Dalal and B. Triggs, “Histograms of oriented gradrior human
detection,” inProc. CVPR, 2005, pp. 886 — 8931

D. Smeets, J. Keustermans, D. Vandermeulen, and P. i&yéimesh-
SIFT: local surface features for 3D face recognition undewession
variations and partial dataComputer Vision and Image Understanding,
vol. 117, no. 2, pp. 158-169, February 2013.

G. Zhang and Y. Wang, “Robust 3D face recognition basetksnlution
invariant features,Pattern Recognition Letters, vol. 32, no. 7, pp. 1009—
1019, May 2011.1

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB1 Efficient
Alternative to SIFT or SURF,” irProc. ICCV, 2011, pp. 2564-25711

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEAn@y
Robust Independent Elementary Features,” BECV, ser. LNCS,
K. Daniilidis, P. Maragos, and N. Paragios, Eds. SpringerliBe
Heidelberg, 2010, vol. 6314, pp. 778-792. [Online]. Avaléa
http://dx.doi.org/10.1007/978-3-642-1556156 1

R. Ortiz, “FREAK: Fast Retina Keypoint,” iffroc. CVPR. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 510-517. [Online]
Available: http://dl.acm.org/citation.cfm?id=2354409.23549032, 3

J. Krizaj, V. Struc, and S. Dobrigek, “Combining 3D Face Representa-
tions using Region Covariance Descriptors and Statishbadlels,” in
FG Workshop, 2013, pp. 1-71, 4,5

P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, Ja@g,
K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the
FRGC,” in CVPR, 2005, pp. 947-9541, 4, 5

A. Colombo, C. Cusano, and R. Schettini, “UMB-DB: A dadse of
partially occluded 3D faces,” ihlCCV W, 2011, pp. 2113-21191, 4

J. Krizaj, V. Struc, and N. Pavesit, “Adaptation of sift features fdsust

face recognition,” inProceedings of the 7th International Conference

on Image Analysis and Recognition (ICIAR 2010), Povoa de Varzim,
Portugal, June 2010, pp. 394-404.2

E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Higen “Adap-
tive and generic corner detection based on the acceleragoent
test,” in Proceedings of the European Conference on Computer Vision
(ECCV'10), September 20102

K. Mikolajczyk and C. Schmid, “A Performance Evaluatiof Local
Descriptors,”|EEE TPAMI, vol. 27, no. 10, pp. 1615-1630, Oct. 2005.
[Online]. Available: http://dx.doi.org/10.1109/TPAMI.2005.188

B. Vesnicer and F. Miheli€, “The likelihood ratio ds@n criterion for
nuisance attribute projection in gmm speaker verificatidelJRAS P
Jour. of Advances in Signal Processing, vol. 2008, pp. 1-11, 2008}

B. Vesnicer, JZganec Gros, and F. Miheli¢, “Fusion of discriminative
and generative scoring criteria in gmm-based speaker cagidn,” in
Proceedings of Text, Speech and Dialogue (TSD 2011), Lecture Notes

in Compute Science, 2011, pp. 139-1464

J. Zibert and F. Mihelig, “Fusion of acoustic and prosodictiras for
speaker clustering,” ifProceedings of Text, Speech and Dialogue (TSD
2009), Lecture Notes in Compute Science, 2009, pp. 210-2174

M. Segundo, C. Queirolo, O. R. P. Bellon, and L. Silvautématic 3D
Facial Segmentation and Landmark Detection,Piroc. ICIAP, 2007,
pp. 431-436.4

S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: BipaRobust
invariant scalable keypoints,” iRroc. ICCV, 2011, pp. 2548-25554
N. Bayramoglu and A. Alatan, “Shape Index SIFT: Rangeadie Rec.
Using Local Features,” ifProc. ICPR, 2010, pp. 352-3555

A. Kaehler and G. Bradsky earning OpenCV: Computer Vision in
C++ with the OpenCV Library. O’Reilly Media, Inc., 2013.5

A. Colombo, C. Cusano, and R. Schettini, “Three-dimemal occlusion
detection and restoration of partially occluded facdsiMath Imag. Vis,
vol. 40, no. 1, pp. 105-119, 20186.

N. Alyuz, B. Gokberk, and L. Akarun, “3-d face recogoiti under
occlusion using masked projectionEEE Transactions on Information
Forensics and Security, vol. 8, no. 5, pp. 789-802, May 2018.


http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1007/978-3-642-15561-1_56
http://dl.acm.org/citation.cfm?id=2354409.2354903
http://dx.doi.org/10.1109/TPAMI.2005.188

