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Faculty of Electrical Engineering, University of Ljubljana,
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Abstract. The standard features used in emotion recognition carry, besides the
emotion related information, also cues about the speaker. This is expected, since
the nature of emotionally colored speech is similar to the variations in the speech
signal, caused by different speakers. Therefore, we present a gradient descent de-
rived transformation for the decoupling of emotion and speaker information con-
tained in the acoustic features. The Interspeech ’09 Emotion Challenge feature
set is used as the baseline for the audio part. A similar procedure is employed on
the video signal, where the nuisance attribute projection (NAP) is used to derive
the transformation matrix, which contains information about the emotional state
of the speaker. Ultimately, different NAP transformation matrices are compared
using canonical correlations. The audio and video sub-systems are combined at
the matching score level using different fusion techniques. The presented system
is assessed on the publicly available eNTERFACE’05 database where significant
improvements in the recognition performance are observed when compared to
the stat-of-the-art baseline.
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1 Introduction

The focus of the speech recognition and computer vision communities on emotion or
affect related topics, has been increasing over the past years. Findings in the field of
automatic emotion analysis can benefit other areas of interest in human computer inter-
action (HCI) such as automatic speech recognition (ASR) systems where performance
drops significantly when the speech is emotionally colored, dialog managers, where
a detection of a frustration in user’s speech could redirect the call to a human opera-
tor, etc. Our previous work [1] leads us to believe that the phenomena of emotions in
speech is by its nature similar to the way the speaker specific information is conveyed
by the speech signal. Therefore, in this work we evaluate the possibility of extracting
speaker specific information from the features, thus increasing the accuracy of the emo-
tion recognition performance. This was achieved by estimating a linear transformation
that mapped the original feature vector extracted from the audio signal, to the mean
vector of the appropriate speaker. The columns of the transformation matrix and the
bias vector concatenated together formed a new feature vector.
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A similar procedure was adopted for the video subsystem. Here, a subspace en-
coding the emotional state of the subject in the video sequence was constructed, and
compared to the prototypical subspaces of the emotional classes in the database. The
two subspaces were compared using an image-set based method relaying on the com-
putation of canonical correlations.

The results from the audio subsystem were fused with the video subsystem in or-
der to evaluate the overall increase in accuracy of our multimodal emotion recognition
system. The eNTERFACE’05 multimodal database [2] was used to evaluate the final
recognition performance.

2 Audio-Video emotion recognition system architecture

The emotion recognition system consists of the two subsystems, one for each modal-
ity. Fig. 1 presents the structure of the system, where the left part represent the video
subsystem and the right represents the audio part. Each systems performs the matching
on its own and the scores for all classes are combined at the fusion level to produce the
final score.

Prototypical
subspaces

VIDEO

Matching

Subspace creation

Face detection

AUDIO

Feature extraction

Feature transformation
using gradient descent

Matching

FUSION

Recognized Emotion

Fig. 1. Overvew of the multimodal emotion recognition system.

3 Audio subsystem

The audio subsystem consists of three major parts, as presented in the right part of the
Fig. 1. First, the low level acoustic features are extracted from the audio signal. Then,
the procedure of extracting emotion related information from the features and discard-
ing the identity information is performed. Finally, the matching algorithm produces the
scores for each sample. The above steps are described in more detail in the following
sections.
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3.1 Acoustic features

At the Interspeech ’09 Emotion Challenge [3] the baseline feature set, consisting of 384
different features, was presented. In one part of the competition, where contestants were
asked to produce their own feature sets that would surpass the baseline, there were none
officially recognized contestants. This leads us to believe, that the proposed feature set
forms the current stat-of-the-art in emotion recognition. In order to speed up the next
step in the audio subsystem (Section 3.2) the whole feature set was reduced to 100
best features following the feature selection procedure based on mutual information as
described in [4]. The comparison of the reduced and original feature set is presented in
the Section 6.

3.2 Decoupling of emotion and speaker specific information

The idea of decoupling the emotional and speaker specific information is similar to
the constrained version of MLLR (CMLLR) transformation [5] used for both speaker
recognition and speech recognition (Eq. (1) shows the transformation of the mean vector
in CMLLR).

µ̂ = A′µ− b′ (1)

Here, the matrix A and bias vector b are estimated for each speaker by increasing the
likelihood of the acoustic model. This way, the speaker specific information is ”moved”
from the acoustic models representing base units (phones, triphones, etc.) to the trans-
formation matrix and bias vector. Hence, the matrix A and vector b present an effective
source of information for discriminating between different speakers. We propose a sim-
ilar procedure of splitting the speaker specific information. The goal is to find a linear
transformation which maps each speaker’s sample to the mean value of all the samples
from that particular speaker. Eq. (2) formulates the transformation, where µ̂i is the av-
erage of all the samples from the i-th speaker, xi,j is the j-th sample from the speaker
i, and matrix Aj and vector bj represent the transformation for the sample j.

µ̂i = Ajxi,j + bj (2)

Estimation of A and b is done employing a gradient descent based method. The cost
function J(Aj ,bj) for sample j is defined as shown in Eq. (3), where xi,j is the j-th
sample from the speaker i, and µ̂i is the average for speaker i.

J(Aj ,bj) =
D∑

d=1

(Ajxdi,j + bj − µi)
2 (3)

The partial derivatives of the cost function with respect to both variables Aj and bj are
shown in Eq. (5) and (4).

∂J(Aj ,bj)

∂Aj
= 2 ∗

D∑
d=1

(Ajxdi,j + bj − µ̂i) ∗ xi,j (4)

∂J(Aj ,bj)

∂bj
= 2 ∗

D∑
d=1

(Ajxd
i,j + bj − µ̂i) (5)
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In every iteration the new matrix Âj and vector b̂j are estimated according to the Eq.
(6) and (7).

Âj = Aj − δA
∂J(Aj ,bj)

∂Aj
(6)

b̂j = bj − δb
∂J(Aj ,bj)

∂bj
(7)

When the cost function converges below the minimum threshold the final estimates of
Aj and bj are produced. Since the linear transformation converts each sample into the
average feature vector for a specific features, the matrix A and vector b are believed to
hold only the information about the speaker’s emotional state. Therefore, the columns
from the matrix Aj and the bias vector bj are concatenated to form the new feature
vector.

3.3 Matching of the acoustic features

For the task of producing the recognition scores, in order to enable the future fusion with
video, support vector machines classifier (SVM) with a linear kernel, was employed.
The one-versus-one approach was used for dealing with the five class recognition task.
The setup used to produce the acoustic scores is described in more detail in Section 5.

4 Video subsystem

The video subsystem comprises three main modules, as depict on the left hand side of
Fig. 1: the face detection module, which detects and extracts the facial regions from
the individual frames of the video sequence, the subspace creation module, which con-
structs a subspace from the given video sequence encoding mostly the emotion specific
information, and finally, the matching module which compares the constructed sub-
space with the emotion-specific subspaces stored in the systems database. The described
modules are presented in more detail in the remainder of this section.

4.1 Face Detection

Extraction and tracking of the facial region during the entire length of the given video
sequence is done using the established Viola Jones face detector. The description of the
detector would exceed the scope of this paper; however, the interested reader is referred
to [6] for more information. An example of the output of the face detection module
when applied on a sample video sequence is shown in Fig. 2

Fig. 2. An example of the output of the face detection module.



Emotion Recognition: Decoupling Emotion and Speaker Specific Information 5

4.2 Decoupling of Emotion and Speaker Information

The second module in the video subsystem represent the subspace creation module.
Here, a subspace is created from the output images of the face detector in such a way
that the emotion specific information in the subspace is enhanced, while the subject (or
better said video sequence) specific information is decreased.

Let us assume that we have a set of facial images XZ = {xi ∈ Rd; for i =
1, 2, ..., nZ} extracted from the given video sequence Z . Here, xi denotes the i-th d-
dimensional facial image (in vector form) from the video sequence and nZ stands for
the number of frames in the sequence Z . We assume that each of the nZ facial images
xi can be decomposed into the following form:

xi = x̂i + ci, (8)

where x̂i represents the identity-specific (constant) part of the image xi, and ci stands
for the variable part of the image caused, for example, changes in the emotional state of
the subject shown in the image.

Let us now assume that the variable part ci of the image represents a random vari-
able drawn from the normal distribution N (0, 1). It is possible to show that the video-
sequence-conditional mean µZ represents an estimate of the constant identity-specific
part of the images xi (see [7] for details). Based on this observation we can conclude
that if we remove the mean µZ from all facial images xi comprising the set XZ , we
arrive at a new image set encoding only the variable (or channel/emotion) part of the
video sequence, i.e.:

CZ = {ci = xi − µZ ; for i = 1, 2, ..., nZ}. (9)

To capture the variability of the channel images into a subspace that can be used for clas-
sification, we compute a scatter matrix Σ from the set of channel images CZ . The first
step here is the construction of the channel matrix C ∈ Rd×n, i.e., C = [c1, c2, ..., cn].
This matrix is then employed for computation of the scatter matrix Σ ∈ Rd×d:

Σ = CCT , (10)

where T represents the transpose operator.
The subspace encoding the channel variations is finally determined by the leading

eigenvectors (that correspond to non-zero eigenvalues) of the following eigenproblem:

Σwi = λiwi, i = 1, 2, ..., d′ ≤ n. (11)

If the scatter matrix is computed only from one test video sequence we obtain a
subspace, that needs to be classified into one of the emotion classes. On the other hand,
if the subspace is computed from all training video sequences of a given emotional
state, we obtain the class prototypes (subspaces) for the specific emotion.

4.3 Matching the subspaces

The last module in the video processing chain is the matching module, where the test
subspace and prototype subspace are compared. Let us consider two d′-dimensional
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linear subspaces WZ and Wω , where the subspace WZ can be thought of as a subspace
extracted from a test video sequence and the subspace Wω represents the prototype
subspace for the class labeled ω. We can measure the similarity of the two subspaces
in terms of the canonical correlations, which are defined as cosines of principal angles
0 ≤ θ1 ≤ θ2 ≤ ... ≤ θd′ ≤ (π/2), i.e.:

cosθi = max
wZi∈WZ

max
wωi∈Wω

wT
Ziwωi, (12)

subject to wT
ZiwZi = wT

ωiwωi = 1, wT
ZjwZi = wT

ωjwωi = 0, for i ̸= j [8], where
the vectors wZi and wωi denote the i-th basis vectors of the subspaces WZ and Wω ,
respectively. The canonical correlations can be computed via Singular Value Decompo-
sition (SVD) of the correlation matrix of the two subspaces. Let WZ and Wω stand for
the matrices containing in their columns the orthonormal basis vectors of the subspaces
WZ and Wω . Then the SVD of the correlation matrix can be written as:

WT
ZWω = QZωΛQωZ , (13)

where Λ = diag(cosθ1, cosθ2, ..., cosθ′d) denotes the diagonal matrix of canonical cor-
relations, and QZω and QωZ represent orthogonal matrices.

The first canonical correlation accounts for the similarity of the closest two basis
vectors of the two subspaces WZ and Wω , while the remaining ones hold information
about the proximity of the basis vectors in other dimensions [8], [9]. For classifica-
tion purposes we use only the first (the maximum) canonical correlation and define the
similarity between two subspaces as δ(WZ ,Wω) = cosθ1. Thus, we formulate the
classification problem as follows:

δ(WZ ,Wωk
) = maxN

i=1δ(WZ ,Wωi) 7→ WZ ∈ ωk. (14)

The above expression postulates that if the similarity between the subspaces WZ and
Wωk

is the highest among the similarities to all N subspaces then the subspace WZ is
assigned to the k-th class.

5 Experimental setup

The tests were conducted using the eNTERFACE’05 multimodal database [2], which
consists of 6 different emotion classes. The five fold cross validation protocol was used,
where in each fold 80% of samples were used for training, 10% comprised the devel-
opment set for training the parameters of fusion, and 10% were used for testing.

The openSMILE toolkit [10] was used to produce the 384 features as described in
Section 3.1. The feature set consists of spectral features (1–12 MFCCs), prosodic fea-
tures (F0, energy), voice quality features (harmonics to noise ratio) and zero-crossing-
rate (ZRC). To this low level descriptors, 12 functionals are applied, thus producing
the starting feature vector for each sample recording. Next, the number of features was
reduced to only 100 most discriminative ones, using the algorithm described in [4].
This step was undertaken not to improve the classification scores, but to enable faster
computation times for the estimation of linear transformations in the next step. As de-
scribed in Section 3.2, the matrix A and vector b are estimated in order to transform
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each sample in to the mean feature vector for the corresponding speaker. Hence, the
transformation contains more concentrated information about the emotional state, and
the speaker specifics are discard. Since the dimension of a feature vector at this step is
of size 100, the transformation matrix A is of size 100 times 100, and bias vector b is of
size 100. Concatenating the columns of A and the vector b, thus comprise a new feature
vector of size 10100. For the gradient descent procedure, an identity matrix of size 100
x 100 was used for the initial value of A, and a vector of all ones for the starting value
of b.

In the work, presented in this article we did not use a speaker identification sys-
tem, which would first predict who the speaker in the sample is in order to select the
appropriate speaker’s mean vector. Instead, we presumed that we know the identity of
the speaker and automatically selected the corresponding speaker’s mean vector. The
described approach was selected in order to evaluate the assumption of speaker specific
information being correlated with the emotional state.

A version of sequential minimal optimization SVM was used to produce a model for
each pair of emotion classes, following a one-versus-one protocol. Counting the number
of wins for each emotion, the score for each sample is produced. Both, the video and
the audio scores were normalized using min-max normalization [11]. A product rule
fusion was used to combine the matching scores from both subsystems. The parameters
of fusion were first determined on the development set, and the final recognition scores
were produced on the test set.

6 Results

The standard measure of accuracy in emotion recognition systems has become the un-
weighted average recall, since it is useful in systems where the emotional classes are
not balanced, which is usually the case in databases of spontaneous emotions. In our
case the database is balanced, but in order to make our results comparable to the others
in the literature, all the results presented in the Table 1 are unweighted average recalls
over all emotion classes.

AUDIO subsystem VIDEO FUSION
original features reduced features decoupled subsystem

(384) (100) features
61.2% 57.01% 66.03% 54.61% 74.33%

Table 1. Comparison of average recalls for audio, video and multimodal emotion recognition.

First, we evaluated the recognition performance of the original acoustic feature set
where a recognition accuracy of 61% was achieved. With the reduction of the number
of features from 384 to only 100 most discriminative ones, the recognition rate dete-
riorated, and the average recall over all folds dropped for approximately 4% absolute.
But with the proposed decoupling of speaker specific information using gradient de-
scent method the recognition accuracy jumped to 66.03%, which is a relative increase
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of 15%. After the fusion with the scores from the video subsystem, which achieves on
its own an accuracy of 54.61%, the final recognition performance of our system climbs
to 74.33%.

7 Conclusion

In the paper we presented a method of decoupling the emotion and speaker specific
information form the acoustic features, usually used in an emotion recognition sys-
tems. The proposed method was evaluated on a popular multimodal database eNTER-
FACE’05, which enabled the fusion of audio and video. We have shown that if we use
a smaller set of features (reducing from 384 to 100) in combination with the proposed
method of extracting emotion specific information and discard the speaker information,
we can achieve an increase in recognition performance of 15% over the reduced feature
set. Over the baseline system we increased the recognition performance by 8% relative.
In the future we will focus on modifications of the proposed algorithm in order to be
able to use it on a larger set of baseline features.
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