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Abstract. This paper proposes a novel approach to light plane labeling in depth-

image sensors relying on “uncoded” structured light. The proposed approach adopts

probabilistic graphical models (PGMs) to solve the correspondence problem between the

projected and the detected light patterns. The procedure for solving the correspondence

problem is designed to take the spatial relations between the parts of the projected

pattern and prior knowledge about the structure of the pattern into account, but it also

exploits temporal information to achieve reliable light-plane labeling. The procedure is

assessed on a database of light patterns detected with a specially developed imaging

sensor that, unlike most existing solutions on the market, was shown to work reliably in

outdoor environments as well as in the presence of other identical (active) sensors directed

at the same scene. The results of our experiments show that the proposed approach is able

to reliably solve the correspondence problem and assign light-plane labels to the detected

pattern with a high accuracy, even when large spatial discontinuities are present in the

observed scene.

Key words: Depth images, structured light, probabilistic graphical models, spatio-

temporal information.

1. Introduction Depth-image acquisition is a field with many areas of ap-

plication that range from reconstructing the shapes of statues, medical imaging

and biometry to obstacle detection and other similar areas. Particularly inter-

esting and simple to implement are the active-triangulation techniques that rely

on the projections of structured light. Much research effort is being directed at

improving structured-light approaches, especially with respect to outdoor usage

(see, e.g., (Mertz, 2012)), where most of the existing solutions struggle with their

performance.

Structured-light approaches to acquiring depth images typically work by pro-

jecting a pattern of structured light onto the observed scene and analyzing the

*This research was supported by the European Union, European Social Fund, within the
scope of the framework of the Operational Programme for Development of Human Resources in
the Period 2007–2013, contract no. 3211-11-000492 (ATRIS).
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Fig. 1. Illustration of the correspondence problem: shape of the projected

pattern (upper left), target scene (upper right), projected pattern

superimposed on the target scene (lower left), deformed detected

pattern (lower right).

deformations of the projected pattern to recover the shape (and reveal the depth

information) of the observed scene. Clearly, an integral part of such an approach is

the procedure for establishing the correspondence between the projected pattern

and the pattern that is detected by the imaging sensor due to interactions with

the observed scene. The difficulty associated with this problem is illustrated in

Fig. 1. Here, the upper-left image depicts the structure of the projected pattern,

the upper-right image shows the observed scene, the lower-left image depicts the

scene with the superimposed light pattern and the lower-left image shows the de-

formed pattern detected by the imaging sensor. To be able to recover the shape

of the observed scene, a one-to-one correspondence between all the parts of the

projected and detected patterns need to be established.

To make the outlined problem simpler, the majority of structured-light ap-

proaches rely either on color-coded projection patterns (Albitar, 2009), (Boyer,

1987), (Koninckx, 2004), (Ulusoy, 2010), (Zhang, 2002) width-coded projec-

tion patterns (Beumier, 1999), time-dependant sequences (Curless, 1995), (Da-

ley, 1998) or other coding techniques (Salvi, 2004). As argued in (Brink, 2008)

and (Robinson, 2004), the presented approaches also exhibit some limitations:

color cannot be applied consistently to surfaces with weak or ambiguous re-
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flectance and limits the use of potentially useful optical filters on the camera side,

for width coding the resolution is less than for uniform parallel stripes and so forth.

Considering the presented limitations, it seems appealing to use projection pat-

terns consisting of uncoded (i.e., homogeneous) parallel stripes, for which the term

uncoded structured light is often used in the literature (Brink, 2008), (Robinson,

2004).

In this paper we present a technique for solving the correspondence problem

between the projected and detected patterns of uncoded structured light. As will

be shown in the paper, the problem corresponds to a light-plane-labeling prob-

lem that can effectively be solved using probabilistic graphical models. With the

proposed approach a graphical model is first constructed by defining local (spatio-

temporal) relationships between the parts of the detected light pattern. Inference

on the graph is then conducted through fractional belief propagation.

The developed labeling technique is applied to images of detected light pat-

terns generated with our imaging sensor (Volkov, 2013), (Žganec, 2009), which

was already shown to be capable of robustly working in outdoor environments

and, therefore, represents a major step towards robustifying structured-light ap-

proaches for outdoor use. Note that even existing commercial products, such as

Microsoft’s Kinect, which relies on speckle-pattern projection, have difficulties

operating in outdoor environments.

To summarize, the following novelties are presented in the paper:

• a technique for building graphical models from the detected, uncoded,

structured-light patterns,

• a technique for solving the problem of correspondence between the projected

and detected patterns based on probabilistic graphical models,

• the inclusion of temporal information into the process of solving the corre-

spondence problem.

The rest of the paper is structured as follows: In Section 2 we briefly present the

imaging sensor used in the paper, formally define the correspondence problem and

describe the preprocessing technique applied to the detected light pattern before

constructing the graphical model. In Section 2.2 we introduce the new labeling

procedure that relies on spatio-temporal information and probabilistic graphical

models and show how it can be used to solve the correspondence problem. We

evaluate the proposed approach in Section 4 and conclude the paper in Section 5.

2. Prerequisites In this section we present the background needed to under-

stand the proposed labeling procedure that is presented in the remainder of the

paper. We commence the section by formally defining the labeling problem we are

trying to solve. We then proceed by briefly describing the depth-image sensor that

is used to generate images of the projected patterns that form the basis for our

work and conclude the section by presenting the basic pre-processing techniques
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Fig. 2. Illustration of the problems typically encountered when solving the

correspondence problem between the light planes of the projected

pattern and the line segments of the detected pattern.

applied to the detected light patterns and defining some of the terminology used

in the paper.

2.1. The labeling problem Structured-light approaches to depth-image acqui-

sition work by projecting a structured light pattern onto a scene and analyzing the

deformations of the projected pattern due to interactions with the scene. Based

on these deformations a depth map of the observed scene can be reconstructed,

but only under the condition that a correct correspondence between the projected

and detected patterns is established (Salzmann, 2007). In our case, where the (un-

coded) structured-light pattern consists of parallel light planes, this corresponds

to finding the correct light-plane label for each part of the detected light pattern.

While this task seems trivial at first, it is in fact quite complex, especially when

depth discontinuities are presented in the observed scene. Fig. 2 illustrates the dif-

ficulties that are often encountered when trying to establish the correspondence. If

the scene contains depth discontinuities (left side of Fig. 2), the projected pattern

is deformed and what is detected is a light pattern where the line segments be-

longing to different projected light planes may form a single line or other (similar)

ambiguities are introduced into the detected pattern.

Formally, the correspondence problem can be defined as follows. Assume that

the detected light pattern (shown in Fig. 3) is represented as a binary image

I; that is, pixels representing scene points illuminated by the projected pattern

are encoded with a value of one, while all the other pixels are encoded with a

value of zero. Let us denote with B = {b1, b2, b3, ..., bN} the set of all non-zero

pixels in image I and let N stand for the number of such pixels.2 Furthermore,

let us denote the set of indices of the light planes constituting our light pattern

as I = {1, 2, ..., k, ...,M}, where M stands for the number of parallel light planes,

and the index 1 denotes the plane that is the lowest in the projected pattern. The

correspondence problem can then be defined as a mapping that assigns each pixel

2Note that in our case the set B actually represents a set of pixel-clusters.
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from B an index from I; that is:

ψ : bi → I, for i = 1, 2, ..., N. (1)

It is clear that the correspondence problem actually represents a labeling problem,

where each non-zero pixel in the detected light pattern needs to be assigned a

light-plane label.

2.2. The imaging sensor The imaging sensor used in this work consists of two

parts, i.e., a pattern projector in the form of a laser and a high-speed camera,

of which both are attached to a rigid structure and are capable of working in

synchronization. The optical center of the camera and projector lie on the same

vertical plane. The camera produces a special pseudo-random binary (on/off)

sequence that drives the laser. When the sequence is in the “on” state, the laser

projects the light pattern onto the scene and, similarly, when the sequence is in

the “off” state, the laser emits no pattern. The camera acquires (sub-)images

of the scene on each clock signal, regardless of the state of the pseudo-random

sequence (on or off). Using the sequence of sub-images acquired by the camera,

the final output image is produced by de-multiplexing the sequence of sub-images

with the multiplexing signal. In other words, the final image is constructed as

a normalized superposition of the entire sequence of sub-images, where the sign

in the sum is determined by the multiplexing signal: 1 (on) is a positive sign

and 0 (off) is a negative sign. In this way, the images that contain the projected

pattern will have a positive sign and the images without the pattern will have

a negative sign (see Fig. 3). After the summation, the projected pattern on the

image is emphasized and the background is suppressed (Žganec, 2009). A similar

background-substraction imaging approach was proposed in (Mertz, 2012), with

the difference being that the acquisition step is not modulated, which can be

prone to disturbances, especially if two such sensors are deployed in the same

environment. Note that different implementations are possible to speed up the

background subtraction, as for example (Hung, 2014).

As demonstrated in (Volkov, 2013), the described sensor has several merits,

such as the capability to work in the presence of other identical sensors as well as

in outdoor environments. Note that an experimental demonstration of the merits

of the sensor is beyond the scope of this paper. The interested reader is referred

to (Volkov, 2013) for more information.

2.3. Image pre-processing The problem formulation presented in Section 2.1

assumes that the detected light pattern represents a binary image. However, our

sensor produces a grey-scale image that needs to be pre-processed to emphasize

the projected patterns and to make them more suitable for the task of solving

the correspondence problem. A local thresholding procedure is, therefore, first

applied to the pattern image to produce its binary version (Gonzales, 2008). The

generated binary image is then processed to generate what we refer to here as
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Fig. 3. Image demultiplexing. Upper part: Sub-images acquired when the

illumination pattern is projected onto a scene. Middle part: Multi-

plexing signal. Lower part: Sub-images acquired when the illumina-

tion pattern is not projected onto the scene. Right side: Schematics

of constructing the final image. Sub-images containing the projected

pattern are multiplied by w1 = 1, whereas sub-images without the

projected pattern are multiplied by w2 = −1.

pixel-clusters

line segments

Fig. 4. Color-coded binary image after preprocessing (best viewed in color).

“pixel-clusters”, which in our case are nothing more than line segments in the

binary image partitioned into smaller pieces, each spanning a certain number of

columns. Some examples of these pixel-clusters are shown in Fig. 4.

In the next section we show how the pixel-clusters can be assigned random

variables and used to build a graphical model. Based on the constructed graphical

model, the mapping ψ from Eq. (1) can then be easily determined.

3. Light-plane labeling with probabilistic graphical models In this section we

build on the ideas introduced in (Ulusoy, 2010) and present the labeling problem

in the form of a probabilistic graphical model (PGM). The use of PGMs for solving

the labeling problem is reasonable, as the theoretical framework and formalism

associated with PGMs allows us to describe complex problems in a concise way by

partitioning them into smaller and simpler parts (Vesnicer, 2008). In the case of
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our labeling problem, this translates to describing the relationships and dependen-

cies between pairs of pixel-clusters based on spatial/temporal/prior information,

and using the constructed dependency chain for inferring the labels of all the parts

of the (global) projected and deformed light pattern.

3.1. Problem formulation with PGMs In general, graphical models consist of

a set of vertices V and a set of edges E connecting those vertices, which together

form a graph G = (V , E). In our case, each pixel-cluster in the detected pattern

is represented as a vertex v ∈ V , while the interdependencies between the pixel-

clusters are represented as the edges e ∈ E of the graph.

Each pixel-cluster and thus also each vertex corresponds to a discrete random

variable X , while the set of all N random variables of a given input image I at

time instance t is defined as X t = {Xt
1, X

t
2, ..., X

t
N}. The domain of the random

variables is defined by I. It is trivial to see that determining the value of each

random variable from X is equivalent to solving the labeling problem defined by

Eq. (1).

To illustrate how the PGM framework is used for modeling the relationships

between pixel-clusters in this paper, let us for a moment examine the two sim-

plified patterns on the left hand side of Fig. 5, acquired at the time instances

t − 1 and t. Each of the two detected patterns consists of three pixel-clusters

that belong to two distinct light planes. As can be seen from the right hand side

of Fig. 5, where the PGM constructed on the basis of our modeling approach is

presented, the state (or value) of each random variable (i.e., each pixel-cluster)

is modeled to depend on its horizontal neighbors, vertical neighbors, temporal

neighbors, and prior knowledge about the structure of the projected pattern. The

dependencies between the neighboring pixel-clusters are defined by so-called fac-

tors, which model the relationships between the random variables, and for the

horizontal, vertical, temporal and prior cases are denoted as φh, φv, φt, and φp,

respectively.

For our modeling approach, the joint probability distribution of the PGM can

thus be written as being proportional to the following factor product:

p(X t−1,X t) ∝

t
∏

t′=t−1
(i,j)∈Eh

φh(X
t′

i , X
t′

j )

t
∏

t′=t−1
(i,j)∈Ev

φv(X
t′

i , X
t′

j )

∏

(i,j)∈Et

φt(X
t−1
i , Xt

j)

t,N
∏

t′=t−1
i=1

φp(X
t′

i ). (2)

where N can, in general, take different values at different time instances and could

also be written as N t′ in the above equation. The sets Eh, Ev, and Et correspond

to the subsets of all the edges E , on which the horizontal, vertical and temporal

factors are defined, respectively. Note that the above joint distribution is defined
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Fig. 5. Illustration of the construction procedure for the PGM: simplified

light pattern (left), corresponding PGM (right).

for the case of two consecutive frames (at time instances t and t−1). The extension

to a longer sequence is straightforward.

After the graph and the factors have been constructed, the optimal config-

uration of the graph can be found using various inference algorithms, such as

a brute force search for exact inference, loopy belief propagation (Kschischang,

2001), or fractional belief propagation (Wiegerinck, 2003), which has also been

used in our experiments (Mooij, 2010). Once the state of each random variable

has been determined, the pixel-cluster-to-light-plane correspondence is known.

3.2. Building the graph The example shown in Fig. 4 represents a simple

toy setting, where two line segments at time instances t and t − 1 are perfectly

aligned, as are the three pixel-clusters comprising the segments. In practice this

is unfortunately very rarely the case. Since no specific topology is present in the

projected pattern that could serve as a reference point for defining the spatial

relationships between the pixel-clusters, we need to define the criteria for defining

vertical, horizontal and temporal neighbors that can be used for building our

graph.

Here, the simplest and most obvious criterion applies to the horizontal neigh-

bors. In our modeling approach two pixel-clusters are considered to be horizontal

neighbors if they are adjacent in the horizontal direction and they represent con-

nected binary regions3. Horizontal neighbors are needed in our PGM to “encour-

age” horizontally adjacent pixel-clusters to take the same label. Most commonly,

each pixel-cluster has two horizontal neighbors, but any other number is possible

as well, even though it is less likely.

Vertical neighbors are defined as pairs of pixel-cluster that contain at least

one pixel at the same x-coordinate (and different y-coordinates). There can again

be several vertical neighbors for a given pixel-cluster, and having more than just

two vertical neighbors is in fact the most common setting for a given pixel-cluster.

3Where a 8-adjacency is considered for the connectivity (Gonzales, 2008).
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Vertical neighbors are needed in our PGM to ensure that the detected light planes

tend to be labeled consecutively and as such are extremely important for our

modeling approach.

Last but not least, temporal neighbors are defined as pixel-clusters from the

pattern images of two consecutive time instances that share at least one non-zero

pixel at the same spatial coordinates. This definition requires no tracking of the

pixel-clusters over time and is, therefore, simple to implement. Temporal neigh-

bors are included in our modeling approach to exploit the additional temporal

information when labeling the light planes of the projected pattern and, as will be

shown in the experimental section this is indeed useful for the labeling accuracy.

The presented definitions define the topology of the PGM (i.e., vertices and

edges) constructed from the given input image I. To be able to conduct inference

on the graph, we need to define the factors between pairs of neighboring vertices

(or on a single vertex) that model the dependencies between the random variables

of the vertices. The procedure for defining this factor used in this paper is described

in the next section.

3.3. Defining the factors As emphasized in the previous section, factors rep-

resent functions of random variables and are typically used to model the depen-

dencies between the neighboring vertices (i.e., random variables) or to include

prior knowledge into the PGM, in which case they apply only to a single vertex.

In the simple toy example in Fig. 5 the factors are represented by small squares.

In our modeling procedure we defined the factors to model the relationships be-

tween horizontally, vertically and temporally neighboring pixel-clusters and added

unary 4 prior factors to include prior knowledge about the pattern structure into

the modeling procedure.

Horizontal factors φh are assigned between variables that correspond to hori-

zontally neighboring pixel-clusters. Depending on the values of both random vari-

ables, the factor determines a fitness value. This fitness is high if the variables

take the same value and small if their values differ, which forces the horizontal

neighbors to tend to correspond to the same projected plane of light. The fitness

assigned by the factor is defined by Eq. (3).

φh(X
t
i = k,Xt

j = k′) =

{

1, k = k′,

fc, else
, (3)

where k, k′ ∈ I, and fc (0 < fc < 1) denotes a fraction cost parameter that tells

us how much the fitness is diminished if two horizontally neighboring pixel-clusters

take a different value.

Vertical factors φv are assigned between the variables whose corresponding

pixel-clusters overlap vertically. This factor tends to assign a high fitness when the

two vertically neighboring pixel-clusters come from two neighboring light planes.

4Factors of a single random variable.
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If this is not the case, the fitness drops accordingly. Eq. (4) summarizes the fitness

determined by the vertical factors:

φv(X
t
i = k,Xt

j = k′) =

{

f(k − k′), k > k′

0, else
, (4)

where k, k′ ∈ I and f stands for a linear function between the difference of

two label indices. The function f decreases monotonically with the difference:

f(δ) =

{

g(1− (δ − 1)h), δ 6= 0

oc, else
. (5)

The constant h determines the function drop rate, oc (overlap cost) denotes

a parameter penalizing two vertically overlapping pixel-clusters taking the same

variable value, and the function g(.) represents a truncating function that trun-

cates all the negative values to zero. Ideally, pixel-clusters originating from the

same projected light plane never overlap vertically, but due to system imperfec-

tions and lens distortions some vertically overlapping pixel-clusters can take the

same value. This is why it should be discouraged, but allowed at high cost.

Temporal factors φt are assigned between the pixel-clusters belonging to two

consecutive frames. Given a sufficiently high frame rate, the pixel-clusters in the

temporal neighborhood should preserve the same correspondence and, hence, also

the same variable state. The temporal factor is a function that assigns high fitness

if the pixel-clusters take the same value and zero fitness if the values differ.

φt(X
t−1
i = k,Xt

j = k′) =

{

1, k = k′

0, else
, (6)

where k, k′ ∈ I.

The prior factors φp are assigned to all the vertices and operate on a single

random variable. They are used to incorporate prior knowledge about the spatial

structure of the projected pattern into the modeling procedure and, in a sense,

carry information about the most likely range of values a random variable can

take with respect to the vertical position of the pixel-clusters and the number of

vertical neighbors above and below. The prior factors are determined based on

the pseudo-procedure shown in Algorithm 1.

4. Experimental assessment

4.1. Experimental setup and performance measurement In order to evaluate

the proposed approach we construct a database of 152 binary images of a dy-

namic scene. The scene is illuminated with the uncoded structured-light pattern

generated by our sensor, which in the current form consists of eleven parallel light

planes5, i.e., M = 11. The scene contains three objects (two cones and a ball)

5Note that the number of parallel light planes the sensor emits can be adjusted depending
on the needs of the application that uses the sensor. Our current prototype features eleven light
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Algorithm 1: Determining prior factors

for all pixel-clusters (i.e., rand. var. Xi) in the image I do

Init: Initialize p as an M -dimensional vector of all zeros;
Result: Normalized distribution φp(Xi);
for all columns in the pixel-cluster Xi do

- find at most M biggest line segments overlapping with the given image
column;
- record the position k of the pixel-clusters among the pixel-clusters found
counting from the bottom of the image up;
if number of found line segments m equals M then

-increase the k-th element of p by some positive constant ρ;
else

- increase all elements of p from position k to k + (M −m− 1) by
some positive constant ρ;

end

end

- normalize the vector p to unit L1 norm; φp(Xi) = p;

end

that are positioned on a rotating table. When the table is turned, the objects

change their position back and forth and left and right in a range of approxi-

mately 1m, thus creating different depth discontinuities. The sensor records the

scene and stores the individual images in our database for subsequent experi-

mentation. Some sample images from the acquired database are shown in Fig. 6.

Here, the upper row depicts raw images of the constructed scene, while the lower

row presents the corresponding detected patterns that serve as the input for the

proposed labeling procedure.

For each acquired image, the ground truth needed to estimate the efficiency

of the proposed labeling approach is obtained by hand labeling all the pixels be-

longing to all the detected line segments. The labels of the pixel-clusters obtained

with our PGM technique are then compared to the pre-annotated ground truth to

estimate the accuracy of the assessed procedure. Here, the accuracy is measured in

the form of the correct labeling rate (CLR), which is defined as the ratio between

the number of correctly labeled (non-zero) pixels ncorrect and all the non-zero

pixels nall, i.e.:

CLR =
ncorrect

nall

, (7)

where CLR∈ [0, 1]. Obviously, a CLR value close to one indicates a good perfor-

mance, whereas a CLR value close to zero indicates a poor performance of the

assessed technique.

planes and was used in this experimental evaluation as such. Since hardware modifications are
beyond the scope of this paper, we made no efforts to alter the number of light planes emitted
by our sensor.
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Fig. 6. Sample images from the constructed database: captured scene (upper

row), detected pattern (lower row)

4.2. Experiments and results The first issue of interest with the proposed

PGM labeling method is the impact of various parameters on the performance of

the proposed method. To examine this issue, we fix all the open parameters to a

default value, change one parameter at a time and observe how the labeling accu-

racy changes with respect to the varying parameter. Even though the parameters

are, in general, not independent, we obtain a rough impression of the performance

of the proposed method with respect to the changing parameter. For this series of

experiments we only use a sequence length of one and, hence, rely for the moment

only on spatial information. The results of the described experiments are presented

in Fig. 7. Note that both the fraction cost fc (see Eq. (3)) and the overlap cost

oc (see Eq. (5)) have only a little effect on the labeling performance, as long as

they are kept sufficiently small. In contrast, the function drop rate h (Eq. (5)) has

a significantly larger impact on the accuracy of the proposed method. All in all,

our experiments suggest that a similar performance can be achieved over a wide

range of parameter values. For the following experiments we fix the values of the

fraction cost fc, the overlap cost oc and the function drop rate h to the values

that resulted in the highest accuracy in this series of experiments.

Another important observation that can be made on the basis of the presented

results is the fact that the PGM labeling technique, in general, results in a rela-

tively high labeling accuracy. This suggests that the spatial relationships defined

between the line segments (and pixel-clusters) of the detected patterns are reason-

able, despite the fact that in the vertical direction no obvious topology is present

to define vertical neighbors. To summarize, the experiments show that it is pos-

sible to define the spatial relationships between neighboring line segments (and

pixel clusters) with the proposed labeling technique without the need to project

complex light patterns, as in (Ulusoy, 2010), and still produce a high labeling



Light plane labeling in depth-image sensors 13

10
−6

10
−5

10
−4

10
−3

0.94

0.941

0.942

0.943

f
c

A
c

c
u

ra
c

y

(a) Effect of varying the fraction cost fc
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(c) Effect of varying the function drop rate h

Fig. 7. Impact of: (a) fraction cost fc , (b) overlap cost oc , and (c) the func-

tion drop rate h on the labeling accuracy of the proposed approach.

The accuracy is measured in terms of the CLR.

accuracy.

With the open parameters fixed in the previous series of experiments, we can

now evaluate the effect of temporal information on the labeling accuracy of our

procedure. To this end, we construct sequences of different lengths from images of

our database that were taken one after the other. We first build a new database

of all the possible sequences of length two, then a database of all the possible

sequences of length three, and so forth up until a sequence length of five. For

each constructed database we compute the labeling accuracy by considering spa-

tial as well as temporal information. The results of the described experiments are

presented in Fig. 8. Note that the performance increases quite significantly when

adding temporal information to the labeling techniques. The largest jump in per-

formance is visible when the sequence length is increased from one (no temporal

information used) to two, while any additional images in the sequence again add

a little to the overall accuracy of the PGM labeling approach, but not as much

as the first. The results suggest that temporal information is indeed important

when labeling structured-light patterns and represents an important source of
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Fig. 8. Effect of varying the sequence length on the labeling accuracy. The

accuracy is again measured in terms of the CLR.

information that can add to the overall accuracy of the labeling procedure.

Another important issue with the proposed labeling technique is the compu-

tational cost. In our experiments the average time needed to process sequences

comprising a single image was around 0.3s. The computational cost increased lin-

early with the length of the sequence and prolonged the processing time by 1s (on

average) for each image that was added to the sequence.

Up to this point, we have looked at the impact of open parameters and the

effect of temporal information on the labeling accuracy of the proposed PGM tech-

nique. Hence, we observed only the relative improvements in the labeling accuracy,

while it is also important to know how the proposed technique compares to other

techniques that are applicable for the task of labeling uncoded structured-light

patterns. To examine this issue we implement two reference techniques, namely

• A naive labeling approach (NLA), which assigns light plane labels to the

detected non-pixels in the order the non-zero pixels appear in the image.

The first non-zero pixel at a given x-coordinate6 looking from the bottom

of the image up is assigned a label of one, the next detected non-zero pixel

is assigned a label of two and so forth, until all eleven labels have been

assigned;

• The reference approach from (Ulusoy, 2010) (RPGM), which also relies on

probabilistic graphical models, but makes no use of temporal information.

The comparison is presented in Fig. 9. Note that the proposed technique outper-

forms both reference techniques in terms of the labeling accuracy, again demon-

6The first non-zero pixel in this context refers to the pixel lowest in the image, or in other
words, the pixel with the largest y-coordinate.
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Fig. 9. Comparison with reference techniques. The performance is measured

in the form of the CLR.

Fig. 10. Automatically labeled pixel-clusters. Left: Unlabeled pixel-clusters.

Right: Labeled pixel-clusters (best viewed in color).

strating that spatial and temporal information are important for the labeling

process.

All in all, the results of our experimental assessment suggest that consider-

ing spatio-temporal information for modeling dependencies among parts of the

structured-light pattern represents a viable solution to the problem of light-plane

labeling in our (depth-image) sensor. Our PGM approach yields good results on

the experimental database and, as can be seen from Fig. 10, where a sample re-

sult image is presented, is capable of assigning the correct index to most of the

pixel-clusters of the detected light pattern, even in difficult situations where large

discontinuities are present in the scene. As can also be seen from the presented

example, the proposed labeling approach easily handles spurious connections in

the detected light planes and assigns them the correct labels. It is also relatively

robust to discontinuities in the detected light planes that are caused either by

discontinuities in the scene or failure to detect the projected patterns.
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5. Conclusion We have presented a novel technique for labeling light planes

in depth-image sensors using probabilistic graphical models. We have shown that

next to the spatial relationships between the parts of the projected pattern, tem-

poral information can also be exploited to improve the labeling accuracy. The

performance of the proposed approach was compared to reference techniques from

the literature and demonstrated highly competitive results.
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